
A brief note on approximate optimization of

submodular functions

Alen Alexanderian*

Abstract

We briefly discuss the greedy method and a couple of its more efficient vari-
ants for approximately maximizing monotone submodular functions.

1 Introduction

Let V be a finite set with n elements.1 For k ∈ {1, . . . , n}, we let 1 In the present context, V
is typically referred to as
the ground set.Vk ··= {A ∈ P (V) : |A| = k}, (1.1)

denote the collection of subsets of V that have k elements.2 In this brief note, 2 Here, P (V) denotes the
power set of V . Also, for
A ⊆ V , |A| denotes its car-
dinality.

we consider optimization problems of the form

max
S∈Vk

f(S), (1.2)

where f : P (V) → R is a non-negative monotone submodular function with
the property that f(∅) = 0. Solving such problems by an exhaustive search is
extremely challenging. This would require

(
n
k

)
evaluations of f , which is pro-

hibitive even for modest values of n and k.3 In this note, we discuss approximate 3 For example, we note(
80
20

)
= O(1018).solution of such problems using the greedy method and some of its variants.

We start our discussion in Section 2 where we outline the requisite back-
ground concepts and notations. The greedy method is discussed in Section 3.
In that section, we also discuss a well-known theoretical guaranty for the greedy
algorithm, in the case of monotone submodular functions. Next, in Section 4, we
discuss a couple of more efficient variants of the greedy algorithm.

2 Preliminaries

Let V be a finite set with |V | = n. Consider a set function f : P (V) → R. We
will always assume f(∅) = 0. Before we define the notion of modularity, we define
the notion of the marginal gain, which is also called the discrete derivative [1].
For A ⊂ V and v ∈ V , we define the marginal gain of f at A with respect to s by

∆f (v |A) ··= f(A ∪ {v})− f(A).

We mention the following useful relation, verifying which is a straightforward
exercise. Let A and H be in P (V) and assume |H| = k with k ≤ |V |. Letting
H = {v1, . . . , vk}, we can write

f(A ∪H) = f(A) +

k∑
j=1

∆f (vj |A ∪ {v1, . . . , vj−1}). (2.1)

Note that this can be thought of a discrete analogue of the Fundamental Theo-
rem of Calculus.4 4 Recall from calculus that

for f ∈ C1([a, a+h]) where
a ∈ R and h > 0,

f(a+h) = f(a)+

∫ a+h

a

f ′(t) dt.

*North Carolina State University, Raleigh, NC, USA. E-mail alexanderian@ncsu.edu
Last revised: August 24, 2025

Optimization of submodular functions

We next state the definition of a submodular function.

Definition 2.1. Consider a set function f : P (V)→ R. We say f is submodular,
if for every A ⊆ V and B ⊆ V such that A ⊆ B,

∆f (v |A) ≥ ∆f (v |B), whenever v ∈ V \B. (2.2)

This definition has an intuitive interpretation—this is a diminishing return
property.5 To make matters concrete, suppose the elements of V correspond 5 The following figure

provides an illustra-
tion of submodularity.

A B

s

∆f (s|A) ≥ ∆f (s|B)

to a set of experiments and suppose f : P (V) → R assigns a utility to each
subset of V . Then, the above definition states that if the experiments in A are
conducted, the marginal utility of performing the experiment v ∈ V \B does not
increase if we also perform the experiments in B \A.

An equivalent characterization of submodularity is provided by the following
result [1]:

Proposition 2.2. A set function f : P (V)→ R is submodular if and only if

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B), for all A,B ∈ P (V). (2.3)

We next consider a basic example of a submodular function.

Example 2.3. Let V = {1, . . . , n} and consider a matrix M ∈ Rm×n. Define the
function f : P (V)→ R by

f(A) =


m∑
i=1

(
max
j∈A

Mij

)
if A ∈ P (V) and A 6= ∅,

0 if A = ∅.
(2.4)

The function f in (2.4) is known as the facility function and is a well-known
example of a submodular function. This function is associated with the scenario
where one seeks to open facilities in n candidate locations to serve m customers.
In this case, Mij quantifies the value provided by the facility at the jth location
to the ith customer. Assuming each customer chooses the facility that provides
the highest value to them, the function f quantifies the total value provided by a
given configuration of facilities.

Another key property of interest for the set functions under study is mono-
tonicity as defined below.

Definition 2.4. Consider a set function f : P (V)→ R. We say f is monotone, if
for every A and B in P (V) such that A ⊆ B, f(A) ≤ f(B).

An example of a monotone function is the facility function considered above,
if we assume Mij ≥ 0 for all i ∈ {1, . . . ,m} and j ∈ V .

3 The greedy method

Consider the optimization problem (1.2) and assume f is a monotone submod-
ular function. Note that, in general, one considers optimization of f over subsets
of V that have less than or equal to k elements. However, since f is assumed
monotone, we consider the setup in (1.2) to keep the discussion simple.

A simple approach to approximately solving (1.2) is the greedy method. In
this approach, we begin with the empty set S = ∅, and in each iteration pick the
element in V \S that provides the largest marginal gain. Specifically, the greedy
algorithm applied to (1.2) produces a finite sequence of sets {Sl}kl=1 as follows:S0= ∅,

Sl = Sl−1 ∪ {arg max
v∈V \Sl−1

∆f (v |Sl−1)}, l = 1, . . . , k. (3.1)

2

Optimization of submodular functions

The output of the greedy algorithm is the set S = Sk, which provides an approx-
imate solution to (1.2).

For each l ∈ {1, . . . , k}, let vl ∈ arg maxv ∆f (v |Sl). That is vl is the element of
V that is selected in the step l of the greedy algorithm so that Sl = Sl−1 ∪ {vl}.
Note that there might be more than one element in V \ Sl−1 that maximize the
marginal gain at that step. In such cases some form of tie-break rule must be
used. The manner in which this is done does not impact the analysis that follows.
Next, note that for every l ∈ {0, . . . , k − 1} and v ∈ V ,

f(Sl+1)− f(Sl) = f(Sl ∪ {vl+1})− f(Sl) = ∆f (vl+1 |Sl) ≥ ∆f (v |Sl). (3.2)

This observation will be revisited shortly.

The greedy algorithm is popular due to its simplicity. This is useful for exam-
ple in the context of sensor placement, where one can place sensors in a greedy
manner. In practice, this approach often provides near optimal sensor place-
ments. In the case of monotone submodular functions, this approach admits a
theoretical guaranty. This is made precise in Theorem 3.1 below. This important
result was proven in [5]. We provide a proof of this result for completeness. The
idea behind the proof belongs to [5]. The present proof was adapted from the
presentation in [1].

Theorem 3.1. Consider a finite set V = {v1, . . . , vn} and assume f : P (V) →
[0,∞) is a monotone submodular function with f(∅) = 0. Let {Sl}kl=1 be produced
by the greedy procedure (3.1), for a given k ∈ {1, . . . , n}. Then,

f(Sk) ≥ (1− 1/e) max
S∈Vk

f(S),

where Vk is the collection of subsets of V with k elements as defined in (1.1).

Proof. The result holds trivially for k = 1. Thus, we assume k > 1. Let S∗ ∈
arg maxS∈Vk f(S). Enumerate elements of S∗ as S∗ = {s∗1, s∗2, . . . , s∗k}. We note
that for each l ∈ {1, . . . , k − 1},

f(S∗) ≤ f(S∗ ∪ Sl) (by monotonicity of f)

= f(Sl) +

k∑
j=1

∆f (s∗j |Sl ∪ {s∗1, . . . , s∗j−1}) (cf. (2.1))

≤ f(Sl) +

k∑
j=1

∆f (s∗j |Sl) (by submodularity of f)

≤ f(Sl) +

k∑
j=1

[f(Sl+1)− f(Sl)] (cf. (3.2))

= f(Sl) + k[f(Sl+1)− f(Sl)].

Hence, f(S∗)− f(Sl) ≤ k[f(Sl+1)− f(Sl)]. Let δl ··= f(S∗)− f(Sl) and note

δl ≤ k(δl − δl+1). (3.3)

This can be restated as δl+1 ≤ (1 − 1/k)δl. Note also that δ0 = f(S∗) − f(∅) =

f(S∗). Therefore, we have

δk ≤ (1− 1/k)kδ0 = (1− 1/k)kf(S∗) ≤ e−1f(S∗). (3.4)

In the last step, we have used the fact that 1 − x ≤ e−x for every x ∈ R. Substi-
tuting δk = f(S∗)− f(Sk) in (3.4), yields f(S∗)− f(Sk) ≤ e−1f(S∗). That is,

f(Sk) ≥ (1− 1/e)f(S∗),

which is the desired result.

3

Optimization of submodular functions

Remark 3.2. Consider the relation (3.3). The quantity δl measures the gap
between f(Sl) and the optimal objective value. An interpretation of (3.3) is that
the improvement in optimality gap, at the step l of the greedy algorithm, is at
least

(
f(S∗)− f(Sl−1)

)
/k.

4 Two variants of the greedy method

The greedy approach, while simple, can still become prohibitive as the car-
dinality of V grows. This is especially the case in problems of optimal sensor
placement where each evaluation of f might be expensive. Over the years, sev-
eral variants of the greedy approach have been proposed to accelerate computa-
tions. In this section, we discuss two such approaches: the lazy greedy and the
stochastic greedy.

4.1 Lazy greedy

The idea behind the lazy greedy algorithm [3] is to make maximum use of
submodularity to reduce the number of function evaluations. Recall that at the
step l of the greedy method, we find an element v ∈ V with maximum marginal
gain ∆f (v |Sl−1); see (3.1). Moreover, by submodularity of f , we have that

∆f (v |Sl−1) ≥ ∆f (v |Sl).

Thus, instead of naively computing all the requisite marginal gains at each step
of the greedy algorithm, we can use the already computed marginal gains as an
upper bound for the subsequent ones.

Let us briefly outline the lazy greedy process. Starting with S0 = ∅, the first
iteration of the lazy greedy method is the same as standard greedy. We compute
ρ(v) ··= ∆f (v∗ |S0) = f({v}) for every v ∈ V . Subsequently, we select s1 ∈ V

that maximizes ρ(v) and let S1 = {s1}. Then, we sort the values of {ρ(v)}v∈V \S1

in descending order. This sorted set of marginal gains will be maintained and
updated in the subsequent iterations of the lazy greedy method. At the lth step
of this method, we perform the following steps:

(i) take an entry v∗ ∈ V \ Sl−1 that maximizes ρ(v);

(ii) compute ∆f (v∗ |Sl−1) and let ρ(v∗) = ∆f (v∗ |Sl−1);

(iii) if v∗ still maximizes {ρ(v)}v∈V \Sl−1
then let Sl = Sl−1 ∪ {v∗} and go to step

l + 1 of the lazy greedy procedure. Otherwise, go back to (i).

While preserving the approximation guarantee of the standard greedy, the lazy
greedy procedure often provides massive improvements over the standard greedy [2].

4.2 Stochastic greedy

The stochastic greedy [4] provides further improvements to the standard greedy
procedure and its lazy counterpart. Recall that in step l of the standard greedy
method, we need to compute the marginal gains corresponding to all elements
in V \ Sl, which requires n − l function evaluations. The idea of stochastic
greedy is to select a random sample from this set of n − l elements and eval-
uate the marginal gain for this randomly chosen sample. For clarity, we outline
the stochastic greedy procedure in Algorithm 1.

4

Optimization of submodular functions

Algorithm 1 Stochastic greedy algorithm.

1: Input: monotone submodular function f , ground set V of size n, size k of the
desired subset of V , and sample size s.

2: Output: A near optimal set A with |S| = k.
3: S = ∅
4: for l = 1 to k do
5: Draw a random sample set R of size s from V \ S
6: vl = arg maxv∈R ∆f (v |S)

7: S = S ∪ {vl}.
8: end for

Note that due to its randomized nature, the output of Algorithm 1 is not de-
terministic. Hence, the approximation guarantee of the method is stated in ex-
pectation. The following result from [4] makes matters precise.

Theorem 4.1. Let V be finite set with n elements and assume f : P (V)→ [0,∞)

is a monotone submodular function with f(∅) = 0. Let ε ∈ (0, 1) be given and S

be a set of cardinality k obtained by performing k steps of the stochastic greedy
algorithm with a sample size of s = dnk log 1

εe. Then,

E{f(Sk)} ≥ (1− 1/e− ε) max
S∈Vk

f(S),

Note that to achieve the requisite approximation guarantee, the size s of
the sample set needed in the stochastic greedy procedure is required to be
s = dnk log 1

εe, as stated in Theorem 4.1 above.6 Thus, the cost of performing 6 In this context n is typ-
ically large and the ratio
n/k is small.

k steps of the algorithm is dn log 1
εe function evaluations. The stochastic greedy

approach provides enormous computational savings over the greedy approach
and its lazy variant. Furthermore, stochastic greedy often provides solutions
whose performance is close to those obtained from standard greedy approach.
Additionally, as discussed in [4] the stochastic greedy can be made more efficient
by incorporating lazy evaluations.

References

[1] A. Krause and D. Golovin. Submodular function maximization. Tractability, 3(71-
104):3, 2014.

[2] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-
effective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 420–429,
2007.

[3] M. Minoux. Accelerated greedy algorithms for maximizing submodular set functions.
In J. Stoer, editor, Optimization Techniques, pages 234–243, Berlin, Heidelberg, 1978.
Springer Berlin Heidelberg.

[4] B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrák, and A. Krause. Lazier than
lazy greedy. In Proceedings of the AAAI Conference on Artificial Intelligence, 2015.

[5] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for
maximizing submodular set functions—I. Mathematical programming, 14:265–294,
1978.

5

	Introduction
	Preliminaries
	The greedy method
	Two variants of the greedy method
	Lazy greedy
	Stochastic greedy

	References

