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1. Preliminary Comments.
In this note, we will go through the proof of Rellich’s Theorem. In general Rellich’s
Theorem says that the inclusion Hm+1(Ω) ↪→ Hm(Ω) is compact (Ω is a bounded
domain). We will show the result for the case of H1

0 (Ω); that is we will establish,
H1

0 (Ω) ↪→ L2(Ω) is compact. Next, we will use properties of compact operators to
get some corollaries of the Theorem. The proof of Rellich’s Theorem requires several
technical developments which will be discussed in the next Section.

2. Technical Tools Needed in the Proof of Rellich’s Theorem.
In this section we will present the technical tools needed in the proof of Rellich’s
Theorem. We start by some definitions.

Definition 2.1. (Relatively Compact)
Let X be a metric space; A ⊆ X is relatively compact in X, if Ā is compact in X.

Definition 2.2. (Precompact)
Let X be a metric space; A ⊆ X is precompact (also called totally bounded) if for
every ε > 0, there exist finitely many points x1, . . . , xN in A such that ∪N1 B(xi, ε)
covers A.

The following Theorem shows that when we are working in a complete metric
space, precompactness and relative compactness are equivalent.

Theorem 2.3. Let X be a metric space. If A ⊆ X is relatively compact then it
is precompact. Moreover, if X is complete then the converse holds also.

The following results which are presented without proof are the main tools in
proving Rellich’s Theorem; their proofs can be found in [1]. However, apart from the
first Theorem, the proof of the following Lemmas is not too involved and amounts to
some technical details.

The following Theorem provides a criterion for relative compactness of a set in
Lp [1].

Theorem 2.4. Let A ⊂ Lp. The A is relatively compact in Lp if and only if
1. A is bounded in Lp.

2. lim
R→∞

∫
{|x|>R}

|f(x)|p dx = 0 uniformly with respect to f ∈ A.

3. lim
a→0

τaf = f uniformly with respect to f ∈ A.

Note that in the above Theorem, τaf(x) := f(x−a). The proof of above Theorem
is rather technical; a clear and concise proof is provided in [1].

The following two Lemmas are also needed.
Lemma 2.5. Let Ω be a bounded domain and let f ∈ H1

0 (Ω). Define,

f̃ :=

{
f on Ω
0 on Rd \ Ω

Then f̃ ∈ H1(Rd) and Φ :
(
H1

0 (Ω), ‖.‖H1
0 (Ω)

)
→
(
H1(Rd), ‖.‖H1(Rd)

)
is an isometry.

Lemma 2.6. Let f ∈ H1(Rd) the for every h ∈ Rd

‖τhf − f‖L2 ≤ |h|‖|∇f |‖L2 .
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3. Rellich’s Theorem.
Since we are discussing compact imbeddings, first we take the time to define a compact
operator formally.

Definition 3.1. Let X and Y be two normed linear spaces and T : X → Y a
linear map between X and Y . T is called a compact operator if for all bounded sets
E ⊆ X, T (E) is relatively compact in Y .

We are now ready to state and prove Rellich’s Theorem. Note that the following
proof is structured in the same spirit as the discussion of Rellich’s Theorem in [1].

Theorem 3.2. (Rellich) Let Ω be a bounded domain in Rd; then the inclusion
map H1

0 (Ω) ↪→ L2(Ω) is a compact operator.
Proof. First define the map, Φ : L2(Rd)→ L2(Ω) given by Φ(u) = u |Ω and note

that Φ is clearly continuous; next, we define Ξ : H1
0 (Ω)→ L2(Rd) by Ξ(f) = f̃ , where

f̃ is the extension of f as defined in Lemma 2.5. We want to show, I : H1
0 (Ω)→ L2(Ω)

is compact, where If = f ; we can use I = Φ ◦ Ξ. Also, we note that the image of
relatively compact set under a continuous mapping between Banach spaces is again
relatively compact; hence, it is enough to prove that Ξ : f → f̃ from H1

0 (Ω) to L2(Rd)
is a compact operator.

We know by Lemma 2.5 that Ξ is an isometry such that ‖f‖H1
0 (Ω) = ‖Ξ(f)‖H1(Rd).

Let B be the closed unit ball in H1
0 (Ω). Define, B̃ := Ξ(B) = {f̃ | f ∈ B}, and note

that by Lemma 2.5 B̃ is contained in the closed unit ball of H1(Rd). If we show that
B̃ is relatively compact in L2(Rd) we are done; to do so we appeal to the criterion for
relative compactness in Lp provided by Theorem 2.4. In what follows we will show
that items (1), (2), and (3) of Theorem 2.4 are satisfied.

Boundedness of B̃ in L2(Rd) was established above where we noted that B̃ is
in the closed units ball of H1(Ω) ⊂ L2(Rd); from this we get that for any f ∈ B,
‖f̃‖L2 ≤ ‖f̃‖H1 ≤ 1. Moreover, for any R > 0 such that Ω ⊂ B(0, R), we have∫

{|x|>R}
|f̃(x)|2 dx = 0,

and hence follows the item (2) of Theorem 2.4. Thus, it remains to show item (3) of
the aforementioned Theorem. Recall that by lemma 2.6, we have for f̃ ∈ B̃

‖τhf̃ − f̃‖L2 ≤ |h|‖ |∇f̃ | ‖L2(Rd) ≤ |h|‖f̃‖H1(Rd) ≤ |h|,

from which we have ‖τhf̃ − f̃‖L2 → 0 as h→ 0. Hence, we also have property (3) of
Theorem 2.4. Therefore, B̃ is relatively compact in L2(Rd); this completes the proof.

4. Some Implications of Rellich’s Lemma.
The following is a basic Theorem regarding compact operators.

Theorem 4.1. Let X and Y be two normed linear spaces; suppose T : X → Y ,
is a linear operator. Then the following are equivalent.

1. T is compact.
2. The image of the open unit ball under T is relatively compact in Y .
3. For any bounded sequence {xn} in X, there exist a subsequence {Txnk

} of
{Txn} that converges in Y .

Using the properties of compact operators and Rellich’s Theorem we conclude
that any bounded set in H0

1 (Ω) is relatively compact in L2(Ω). In particular, the
following corollary is very useful in applications.
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Corollary 4.2. Let Ω be a bounded domain in Rd. Any bounded sequence in
H1

0 (Ω) has a subsequence that converges strongly in L2(Ω).
To conclude this brief note, we recall that what we proved is a special case of

Rellich’s Theorem; for a discussion of the Theorem in greatest generality, Adams [2]
is a good reference. A last remark would be to comment that Rellich’s Theorem
is indeed a very deep result based on some fundamental Theorems in analysis and
measure Theory; the proof of Theorem 2.4 uses one major result for each direction
of the proof: one implication (that A is precompact implies (1), (2), and (3)) uses
Lebesgue Dominated Convergence Theorem, whereas the converse implication uses
Ascolli’s Theorem [1].
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