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Abstract

A Linear Complementarity System (LCS) is a special type of a dynamical system
which involves a system of Ordinary Differential Equations (ODEs) coupled with a
Linear Complementarity Problem (LCP). In this note, we provide a careful study of
some new developments in stability theory of Linear Complementarity Systems. After
discussing some background results from LCP theory and ODE theory, we will discuss
an extension of the well known LaSalle’s Theorem in the context of an LCS developed
by the authors in [2].
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1 Introduction

LCSs comprise a special class of dynamical systems which are defined by a linear ODE
system of form {

ẋ = Ax + Bu,
x(0) = x0,

where A and B are constant matrices and u is an algebraic variable which is the solution
to the LCP:

0 ≤ u ⊥ Cx + Du ≥ 0,

where C and D are constant matrices. Hence, we see that an LCS involves a linear ODE
system coupled with an LCP.
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In general, given constant matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and D ∈ Rm×m,
LCS(A,B, C, D) is the problem of finding the state trajectory x = x(t) ∈ Rn and control
input u = u(t) ∈ Rm such that 

ẋ = Ax + Bu
0 ≤ u ⊥ Cx + Du ≥ 0,
x(0) = x0.

(1)

Naturally, LCS theory borrows many elements from LCP theory and ODE systems theory.
A detailed discussion of some fundamental issues in LCS theory can be found in [8]. There
are also survey papers such as [6] which provide examples of the types of problems addressed
in context of Complementarity Systems and Linear Complementarity Systems.

In this technical note, we will be discussing some recent developments in stability theory
of LCSs given in [2]. Our focus will be mainly on an extension of LaSalle’s Theorem (from
stability theory for non-linear ODEs) presented in the aforementioned paper. We will
discuss, in detail, the case where the matrix D in (1) is a P-matrix; extension to non-P case
which is also covered in [2] will be mentioned briefly.

The organization of this paper is as follows. In the Section 2, we will discuss some
background results from LCP theory, theory of multi-valued functions, and some stability
results including LaSalle’s Theorem. In Section 3, we will cover the stability results for
LCSs. Finally, we will close our discussion by some concluding remarks in Section 4

2 Some Theoretical Background

In this Section, we will review some basic ideas from LCP theory, theory of set-valued maps,
and theory of ODE systems. The results stated in this section, and the notation developed
herein will be used extensively in Section 3 where we will be discussing stability results for
the case of an LCS. Note that the results presented in this Section are only the ones needed
in our subsequent discussion on LCSs.

2.1 Concepts from LCP theory

Here, we recall some basic results from the theory of Linear Complementarity Problems and
set valued mappings. The results presented in this section, most of which presented without
proof, will be essential in our subsequent developments. We start by first developing some
notation.

For vectors u and v belonging to the Euclidean space Rn, we say u and v are orthogonal
if

∑n
i=1 uivi = 0; we use the notation u ⊥ v to say u and v are orthogonal. Given a vector

q ∈ Rn and a matrix M ∈ Rn×n, we look at the problem of finding u ∈ Rn such that

0 ≤ u ⊥ q + Mu ≥ 0. (2)

The above problem is a Linear Complementarity Problem, denoted by LCP(q,M). There
is a rich body of theory developed regarding LCPs. We will review here some basic results
which will be needed in our subsequent discussions in Section 3. For more on LCP theory,
[3] and [4] are good sources to refer to.

Given, q ∈ Rn and M ∈ Rn×n, we denote the solution set of the LCP(q,M) by
SOL(q,M). Naturally, the properties of the matrix M has a lot to do with questions
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of feasibility, existence, and uniqueness for a given LCP; this gives rise to the study of var-
ious classes of matrices in LCP theory. Here, we will talk about two major matrix classes
which we will encounter in our discussions in this paper. For more on different matrix
classes and their properties see for example [3] or [4].

Definition 2.1. (P-Matrix) We call a matrix M ∈ Rn×n a P-Matrix, if the determinant of
all of its principal sub-matrices are positive; that is, det(Mαα) > 0 for all α ⊆ {1, . . . , n}.

Definition 2.2. (Copositive Matrix) Let K ⊆ Rn be a cone. We call a matrix M ∈ Rn×n

copositive on K if xT Mx ≥ 0 for all x ∈ K. Moreover, we call a matrix strictly copositive
on K if xT Mx > 0 for all x ∈ K \ {0}.

Remark 2.3. In some texts, a (strictly) copositive matrix is defined with the cone K explic-
itly taken to be the non-negative orthant.

K = {x ∈ Rn | x ≥ 0}.

Note that for a fixed matrix M , Φ(q) = SOL(q,M) is a set-valued mapping. It is well
known that in the case of M being a P-matrix, LCP(q,M) has a unique solution for any
q ∈ Rn [7]; consequently, Φ(q) will be a singleton for any q ∈ Rn. We would like to say
more on the properties of the solution map of an LCP; this leads us to discuss the notion
of a polyhedral multi-function.

Let Φ : Rn 7→ 2Rm
be a set-valued mapping (that is for any x ∈ Rn, Φ(x) ⊆ Rm).

Denote by Γ(Φ) the graph of Φ; that is,

Γ(Φ) = {(x,y) ∈ Rn × Rm | y ∈ Φ(x)}.

We define a polyhedral multifunction as below [7].

Definition 2.4. (Polyhedral Multifunction) Let Φ : Rn 7→ 2Rm
be a set-valued mapping.

If there exists finitely many polyhedrons, P i ∈ Rn × Rm,

P i = {(x,y) ∈ Rn × Rm | Bix + Aiy ≤ bi},

such that Γ(Φ) = ∪N
i=1P

i, we call Φ a polyhedral multifunction.

For convenience, we use the abbreviation PMF for a polyhedral multifunction from this
point on. There is a special class of PMFs which is of special interest. Let Φ : Rn 7→ 2Rm

be a PMF such that for any x ∈ Rn, Φ(x) is a singleton set; we call such a PMF a PMF
with singleton property. The next result we are going to discuss brings to light the desirable
properties of a PMF with singleton property; first we introduce the notion of a piecewise
affine (linear) function [4].

Definition 2.5. Let F : Rn 7→ Rm be a single-valued continuous mapping. We call F
piece-wise affine (linear) if there exists finitely many affine (linear) functions {F i}N

i=1, (for
some N ∈ N), F i : Rn 7→ Rm, such that for all x ∈ Rn,

F (x) ∈ {F 1(x), · · · , FN (x)}.

From this point on, we will use the abbreviation PA (PL) for a piece-wise affine (linear)
function.
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Figure 1: A piece-wise affine function

Theorem 2.6. A PMF with singleton property is continuous and PA1.

The next idea we need is that of a polyhedral subdivision.

Definition 2.7. Let Ξ be a finite collection of polyhedrons in Rn, Ξ = {P i}N
1 . We call Ξ

a polyhedral subdivision of Rn if the following conditions hold [7]:

1. Rn = ∪N
i=1P

i.

2. Each P i has dimension n.

3. The intersection any two of the polyhedrons is either empty or a proper common face.

There is a geometric way of looking at a PA function. Let us first consider a PA function
on R. In Figure 2.1, we see an example. We note that the function in Figure 2.1 induces
a natural subdivision of R into intervals corresponding to each piece of the function. This
idea can be extended into higher dimensions also; in that case, we will have a polyhedral
subdivision of Rn induced by a PA function F : Rn 7→ Rm.

Theorem 2.8. [4] A continuous mapping F : Rn 7→ Rm is PA if and only if there exists a
polyhedral subdivision Ξ = {P i}N

1 of Rn and a family of affine functions {F i}N
i=1 such that

F ≡ F i on P i.

Theorem 2.8 can be used to prove the following useful result for PA functions [7].

Theorem 2.9. Let F : Rn 7→ Rm be a continuous PA function. Then, F is globally
Lipschitz. That is, there exists a constant K > 0 such that

∥∥F (x1)− (x2)
∥∥ ≤ K

∥∥x1 − x2
∥∥

for all x1 and x2 in Rn.

The following is an easy consequence of the Theorems 2.6 and 2.9.

Corollary 2.10. A PMF with singleton property is globally Lipschitz continuous.

Now, we go back to study of LCP(q,M); one can show, by looking at the solution map
of an LCP the following result [7].

1This result was proved first by M.S. Gowda.
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Lemma 2.11. For a fixed matrix M ∈ Rn×n, let Φ(q) = SOL(q,M) (a set-valued mapping
on Rn). Then, Φ(q) is a PMF.

Before moving further, we consider an LCP(q,M) where M is a P-Matrix; as we men-
tioned before, in this case, SOL(q,M) is a singleton for any q ∈ Rn; hence, by Lemma 2.11,
u(q) = SOL(q,M) will be a PMF with singleton property, and therefore is globally Lips-
chitz continuous. Hence, there exist a constant K > 0 such that for any q1, q2 ∈ Rn,∥∥u(q1)− u(q2)

∥∥ ≤ K
∥∥q1 − q2

∥∥ .

Finally, noting u(0) = 0 we get that,

‖u(q)‖ ≤ K ‖q‖ , ∀q ∈ Rn.

The special structure of the solution set of an LCP gives us more information in singleton
case. For example, we have the following result [7].

Lemma 2.12. Let B ∈ Rn×m, C ∈ Rm×n, and D ∈ Rm×m, be given such that B SOL(Cx, D)
is a singleton for all x ∈ Rn. Then, Φ(x) = B SOL(Cx, D) is a continuous PL function
and hence globally Lipschitz.

2.2 Concepts form Stability Analysis of ODE Systems

In this sub-section, we recall some results from the stability theory for ODE systems2.
Given, a function f : Rn 7→ Rn, we consider the system,{

ẋ(t) = f(x),
x(0) = x0.

(3)

Assuming f is Lipschitz is sufficient for well-posedness of the problem (3); that is, given
an initial condition, x0, the corresponding state trajectory x(t,x0) will be unique given the
right-hand side function f is Lipschitz continuous [1].

Recall that an equilibrium, xe ∈ Rn for (3) is a state such that f(xe) = 0. Also, if
x0 = xe then x(t,x0) = xe for all t ≥ 0. Given an equilibrium xe one may ask questions
such as what will happen if we start with an initial condition very close to xe? If we start
with an initial state sufficiently close to xe, will the trajectory stay close or level off at xe

in the long run? Such questions lead us to a formal study of the stability of ODE systems.
In what follows we will study some fundamental results regarding stability analysis of ODE
systems most relevant to the further developments in our subsequent discussions.

Definition 2.13. Consider a system,{
ẋ(t) = f(x),
x(0) = x0,

(4)

and let xe be an equilibrium state. We recall the following notions of stability [5].

1. We say xe is stable in the sense of Lyapunov if for any ε > 0 there exists a δ > 0 such
that ∥∥x0 − xe

∥∥ < δ =⇒
∥∥x(t,x0)− xe

∥∥ < ε, ∀t ≥ 0.

2We consider time-invariant systems only.
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2. We say that xe is asymptotically stable if it is stable in the sense of Lyapunov and
for δ chosen above∥∥x0 − xe

∥∥ < δ =⇒
∥∥x(t,x0)− xe

∥∥ → 0, as t →∞.

3. We say that xe is exponentially stable if there exists δ > 0, k > 0, and µ > 0 such
that ∥∥x0 − xe

∥∥ < δ =⇒
∥∥x(t,x0)− xe

∥∥ ≤ ke−µt
∥∥x0 − xe

∥∥ , ∀t ≥ 0.

It is clear that exponential stability implies asymptotic stability and asymptotic stability
implies Lyapunov stability; these implications cannot be reversed in general. However, in
the special case of a linear system, where the right-hand side function f is linear (f(x) = Ax
for a matrix A), it is well known that the notions of asymptotic stability and exponential
stability are equivalent [7].

Note that when considering an equilibrium state xe of (4), we can, without loss of
generality, assume xe = 0; suppose we have an equilibrium xe 6= 0, it is trivial matter to
do a change of coordinates so that xe is shifted to origin. To be more precise, given xe 6= 0
use the change of variable

z = x− xe.

Then, we have
ż = ẋ = f(x) = f(z + xe) := f̄(z).

Now note that z = 0 is an equilibrium for the system ż = f̄(z). Next, we look at the
following simple result regarding asymptotic stability when the right-hand side function f of
the system (3) is a positively homogeneous function; recall that a function f(x) is positively
homogeneous if f(τx) = τf(x) for any τ ≥ 0.

Lemma 2.14. Suppose the right-hand side function f in (3) is positively homogeneous. Let
xe = 0 be an equilibrium of (3); if xe is asymptotically stable then Ker{f} = {0} (where
Ker{f} = {x ∈ Rn | f(x) = 0}).

Proof. Suppose to the contrary that there exits 0 6= x̄ ∈ Ker{f}. Then, for any ε > 0,
f(εx̄) = εf(x̄) = 0. So εx̄ is also an equilibrium for any ε > 0.

Now for any δ > 0, we can let zδ = δ
2

x̄
‖x̄‖ , so that

∥∥zδ − xe
∥∥ =

∥∥zδ
∥∥ < δ. Also, we have

by the previous argument that zδ is an equilibrium state. Subsequently,∥∥∥x(t, zδ)− xe
∥∥∥ =

∥∥∥zδ
∥∥∥ 6= 0 ∀t ≥ 0.

However, this contradicts the asymptotic stability of xe = 0 (the convergence property is
violated). Therefore, it follows that Ker{f} = {0}.

For a linear system, {
ẋ(t) = Ax,
x(0) = x0,

(5)

where A ∈ Rn×n, we can use the above result to conclude that a necessary condition for
xe = 0 to be asymptotically stable is that3 Rank(A) = n.

3This rank condition on A is trivial to show using the more specialized results for linear ODE systems,
where we consider the eigen-values of A.
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Now, we consider more sophisticated results. The stability theory of ODE systems is a
vast area of study. There are many specialized results, for instance, for the case of linear
systems which we will not discuss here; instead, we stay focused on results more relevant to
our discussion. The following well known result provides a sufficient condition for Lyapunov
stability of a non-linear system [7].

Theorem 2.15. Consider the following non-linear system{
ẋ(t) = f(x),
x(0) = x0,

(6)

with a Lipschitz f : Rn 7→ Rn. Let xe = 0 be an equilibrium state. Suppose there exists a
neighborhood N of xe and a continuously differentiable function V : Rn 7→ R such that

V (xe) = 0, and V (x) > 0 ∀x ∈ N \ {0},
V̇ (x(t,x0)) ≤ 0, for x(t,x0) ∈ N .

Then, xe = 0 is stable in the sense of Lyapunov. Moreover, if V̇ (x(t,x0)) < 0 , for
x(t,x0) ∈ N in above conditions, then xe = 0 is asymptotically stable.

The above result, called Lyapunov’s direct method, is an elegant theoretical construct.
However, in practice, it is not so easy to apply Theorem 2.15 for the very simple reason
that coming up with a function V satisfying the conditions of the theorem is not always
an easy task. However, the result is still fundamental in the stability theory of non-linear
systems. Note that finding V such that the above theorem gives asymptotic stability is even
more difficult. Hence, one may ask, under what conditions the requirements on V can be
relaxed in such a way that we can still get asymptotic stability. The answer to this question
is eventually given by LaSalle’s Theorem. Before discussing LaSalle’s result, however, we
need some technical preparations.

Definition 2.16. (Positive Limit Set [7]) Let an initial condition x0 ∈ Rn of the time
invariant non-linear system {

ẋ(t) = f(x),
x(0) = x0,

(7)

be given. If there exists a sequence {tk}tk≥0, such that limk→∞ x(t,x0) exists. Then, we
denote x∞ := limk→∞ x(t,x0), and call x∞ a positive limit point of x0. We then call the
set of all positive limit points of x0 its positive limit set and denote this set by Ω(x0).

Definition 2.17. (Positive Invariance [7]) Consider the ODE system (7) from the last
definition. A set M ⊂ Rn is a positively invariant set (with respect to (7)) if the following
holds:

x0 ∈ M =⇒ x(t,x0) ∈ M, ∀t ≥ 0.

The following is a standard technical result regarding the positive limit set [7]. Again
consider the problem (7).

Lemma 2.18. Let x(t,x0) be a trajectory of (7) with initial state x(0) = x0. Suppose there
exists a compact set N such that x(t,x0) ∈ N for all t ≥ 0. Then, Ω(x0) is non-empty,
compact, connected, and positively invariant.
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The above technical Lemma is used in the proof of the following well known stability
result [7].

Theorem 2.19. Let xe = 0 be an equilibrium of (7); assume the right-hand side function
f is Lipschitz on a neighborhood N of x0. Let V be a C1 function satisfying the following
conditions.

� V (0) = 0, and V (x) > 0, for all 0 6= x ∈ N .

� V̇ (x(t,x0)) ≤ 0, for x(t,x0) ∈ N .

Then, we have the following

1. There exists neighborhood Ñ of xe = 0 such that for all x0 ∈ Ñ , we have x(t,x0) ∈
N , ∀t ≥ 0.

2. For all x0 ∈ Ñ , there exists a constant c = c(x0) such that

� V (x∞) = c(x0), ∀x∞ ∈ Ω(x0)

� V̇ (x(t,x∞)) = 0 for all t ≥ 0, for any x∞ ∈ Ω(x0).

3. If in addition to the above conditions on V we also have on a compact neighborhood
N̂ containing N ,

V̇ (x(t,x∞)) = 0 =⇒ x0 = 0. (8)

Then xe = 0 is asymptotically stable.

The third statement of the above Theorem is the well known LaSalle’s result. Note
that in Theorem 2.15, we needed a Lyapunov function V which is positive on a compact
neighborhood N of xe = 0, and V̇ (x(t,x0)) < 0 for x(t,x0) ∈ N , to get asymptotic stability.
On the other hand, in Theorem 2.19, we only require V̇ (x(t,x0)) ≤ 0 for x(t,x0) ∈ N which
is a less stringent condition. However, we had to compensate for this weaker assumption by
the added hypotheses we saw in the Theorem 2.19. As we will see in Section 3, an extension
of LaSalle’s result can be proved to test for asymptotic stability in the case of an LCS.

3 Stability of Linear Complementarity Systems

Given constant matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and D ∈ Rm×m, consider the
LCS(A,B, C, D) which is the problem of finding the state trajectory x = x(t) ∈ Rn and
control u = u(t) ∈ Rm such that

ẋ = Ax + Bu,
0 ≤ u ⊥ Cx + Du ≥ 0,
x(0) = x0.

(9)

Suppose we have that B SOL(Cx, D) is a singleton4 for any x ∈ Rn. Then (9) is the
same as {

ẋ = Ax + B SOL(Cx, D),
x(0) = x0.

(10)

4More precisely, we assume that For any x ∈ Rn, B SOL(Cx, D) is non-empty and is a singleton set.
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Also, using singleton property of B SOL(Cx, D), we know the mapping x 7→ B SOL(Cx, D)
is globally Lipschitz (use Lemma 2.12). Therefore the right-hand side function in (10) is
globally Lipschitz continuous; hence, we know that there exists a unique C1 state trajectory
for any given x0. In fact we can be more precise by stating the following result [2].

Theorem 3.1. Consider the LCS (9). Then, the following are equivalent.

1. For any x0 ∈ Rn, the LCS (9) has a unique C1 state trajectory, x(t,x0), for all t.

2. For any x0 ∈ Rn, the set B SOL(Cx(t,x0), D) is a singleton for every t.

Proof. (1) ⇒ (2): Let x0 ∈ Rn be any initial state. Fix a time t∗ and let u1 and u2 be
in SOL(Cx(t∗,x0), D). We know by (1) that x(t∗,x0) is uniquely defined. Then, we have
Bu1 = ẋ(t∗,x0)−Ax(t∗,x0) = Bu2; hence, we have (2).

(2) ⇒ (1): Consider t = 0; then, (2) says that For any x0 ∈ Rn, the set B SOL(Cx0, D)
is a singleton. Then, (1) follows by our earlier discussions above.

As noted by authors in [2] assuming B SOL(Cx, D) is a singleton for all x ∈ Rn, is
not actually a very restrictive assumption and there are many interesting cases where this
condition is satisfied; under this singleton assumption, instead of discussing the LCS (9),
we can instead examine the problem (10), which is repeated below for convenience.{

ẋ = Ax + B SOL(Cx, D)
x(0) = x0.

(11)

Then, to discuss the stability of LCS (9), we can examine the above problem. Note that
at this point we have a ODE system, with a Lipschitz continuous right-hand side, whose
stability can be put in terms of stability ideas discussed in Section 2.2.

We can get a result regarding asymptotic stability of xe = 0 as follows. Consider
problem (11); first recall that if u ∈ SOL(Cx, D) then εu ∈ SOL(C(εx), D) for any ε > 0.
Now, we want to show for all ε > 0, B SOL(C(εx), D) = εB SOL(Cx, D) for any fixed x.
Let u0 be some element in SOL(Cx, D); By singleton property of B SOL(Cx, D) we know
Bu0 = Bu, for any u ∈ SOL(Cx, D); that is Bu0 = B SOL(Cx, D). Next, note that for
a u1 ∈ SOL(C(εx), D), we know 1

εu
1 ∈ SOL(Cx, D). Therefore, Bu1 = εB(1

εu
1) = εBu0.

Therefore,
B SOL(C(εx), D) = Bu1 = εBu0 = εB SOL(Cx, D).

Subsequently, we note that the function f(x) = Ax + B SOL(Cx, D) is positively homoge-
neous in x. Then, using Lemma 2.14 we have the following result.

Corollary 3.2. Consider the equilibrium xe = 0 of (11); if xe is asymptotically stable then
Ker{Ax + B SOL(Cx,D)} = {0}.

Proof. By the above argument, the right-hand side function f(x) = Ax+ B SOL(Cx, D) is
positively homogeneous. Hence, the result follows by applying Lemma 2.14.

Using the above Corollary, we can get the following result.
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Corollary 3.3. Consider the problem (11), where we assume B SOL(Cx, D) is singleton
for all x ∈ Rn. If the following system is solvable{

Ax = 0,
Cx 
 0.

(12)

Then the equilibrium xe = 0 is not asymptotically stable.

Proof. Suppose x̄ solves (12). First note that Cx̄ 
 0 implies x̄ 6= 0. Next, since Cx̄ ≥ 0,
we know that u0 = 0 is a solution to LCP(Cx̄, D); then, by the singleton property of
B SOL(Cx̄, D), we know B SOL(Cx̄, D) = Bu0 = 0. Therefore, Ax̄ + B SOL(Cx̄, D) = 0,
and hence Ker{Ax̄ + B SOL(Cx̄,D)} 6= {0}. Therefore, by Corollary 3.2, we know that
xe = 0 is not asymptotically stable.

3.1 Asymptotic Stability for xe = 0

In the sequel, our goal is to provide sufficient condition for asymptotic stability of an
equilibrium xe = 0 of the LCS (9). Authors in [2] achieved this through an extension to
LaSalle’s Theorem (see Theorem 2.19). Here we consider the case where D is a P-matrix
in which case, SOL(Cx, D) is a singleton for all x ∈ Rn; that is, given any x ∈ Rn we
have a corresponding unique u(x). Moreover, by the Lipschitz property of the solution map
u(x) = SOL(Cx, D) (see results in Section 2.1), we know there exists cD > 0 such that for
any x ∈ Rn,

‖u(x)‖ ≤ cD ‖x‖ . (13)

In what follows, the graph Γ(u) of the solution map, u(x) = SOL(Cx, D),

Γ(u) = {(x,u(x)) ∈ Rn × Rm | x ∈ Rn},

will be of special importance. Note that Γ(u) is a closed cone (not necessarily convex).
We also consider the directional derivative of u(x) in direction d,

u′(x;d) = lim
τ↓0

u(x + τd)− u(x)
τ

.

Then, following the discussion in [2], we define the map, SOL′LCS : Rn 7→ Rm × Rm by

SOL′LCS(x) =
[

u(x)
u′(x;dx)

]
,

where dx = Ax + Bu(x). Again, we look at the graph, Γ(SOL′LCS). Note that Γ(SOL′LCS)
is a cone; however, unlike Γ(u), it is not in general closed, for u′(x;d) may be discontinuous
in x.

Now, with the assumption that D is a P-matrix, we know that for any x ∈ Rn, there is
a unique u(x) ∈ Rm; thus, LCS (9) becomes{

ẋ = Ax + Bu(x)
x(0) = x0.

(14)
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Note that the right-hand side function f(x) = Ax+Bu(x) is PL and f(x) = 0 at the origin.
We follow the approach in [2] where existence of a symmetric matrix M ∈ R(n+m)×(n+m)

M =
[

P Q
QT R

]
(15)

which is strictly copositive on the cone Γ(u) is postulated. We immediately note the fol-
lowing.

Lemma 3.4. There exists a constant cM > 0 such that yT My ≥ cMyTy for all y ∈ Γ(u).

Proof. By strict copositivity of M on Γ(u) we have

yT My > 0 ∀y ∈ Γ(u) \ {0}.

Now recall that Γ(u) is closed also; thus, f(y) = yT My > 0 is continuous and bounded
from below on the compact set K = {y ∈ Γ(u) | ‖y‖ = 1}. Therefore, there is a y0 ∈ K
such that f(y) ≥ f(y0) for all y ∈ K. Let cM = f(y0) > 0 and note that

f(y) = yT My ≥ cMyTy, ∀y ∈ Γ(u).

With this preparations, we define [2]

V (x,u) =
[

x
u

]T [
P Q
QT R

] [
x
u

]
. (16)

Consider also the composite function

V̂ (x) := V (x,u(x)) = xT Px + 2xT Qu(x) + u(x)T Ru(x).

Note that V̂ is locally Lipschitz and has directional derivatives [2],

V̂ ′(x;v) = 2xT Pv + 2vT Qu(x) + 2xT Qu′(x;v) + 2u(x)T Ru′(x;v).

Now consider trajectories of the LCS (14), (x(t,x0),u(x(t,x0))). For notational conve-
nience, we denote u(x(t,x0)) = u(t,x0). Then, define the function

φx0(t) := V̂ (x(t,x0)), ∀t ≥ 0.

Next, we use chain rule for directional derivatives to get the one sided derivative of
φx0(t) [2],

φ′x0(t+) = lim
τ↓0

φx0(t + τ)− φx0(t)
τ

= V̂ ′(x(t,x0); ẋ(t,x0))

= 2x(t)T P ẋ(t) + 2ẋ(t)T Qu(x(t)) + 2x(t)T Qu′(x(t); ẋ(t)) + 2u(t)T Ru′(x(t); ẋ(t)),
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where in the last equality we have suppressed the dependence on x0 to make the notation
clearer. Now, let

v(t,x0) = u′(x(t,x0); ẋ(t,x0)),

and recall that from LCS (14) we have

ẋ(t,x0) = Ax(t,x0) + Bu(t,x0).

Substituting the expression for ẋ(t,x0) into the expression for φ′x0(t+) will result in a
rather long expression. To have a more compact form for φ′x0(t+), we develop the following
notation (recalling symmetry of P and R) [2]. Let z(t,x0) ∈ Γ(SOL′LCS) be given by

z(t,x0) =

 x(t,x0)
u(t,x0)
v(t,x0)

 ,

and define the matrix

N =

 AT P + PA PB + AT Q Q
BT P + QT A QT B + BT Q R

QT R 0

 .

Then, we have that
φ′x0(t+) = z(t,x0)T Nz(t,x0). (17)

Now using the notation developed so far, we set out to derive sufficient conditions for
stability of xe = 0.

In what follows we assume the matrix D in LCS(A,B, C, D) is a P-matrix, and assume
there exists a symmetric matrix M ∈ R(n+m)×(n+m)

M =
[

P Q
QT R

]
(18)

which is strictly copositive on the cone Γ(u).
In proving the first stability result, we will need the following theorem on differentiability

of locally Lipschitz functions [9].

Theorem 3.5. (Radamacher) If a function f : Rn 7→ Rm is locally Lipschitz on an open
set Ω, then it is differentiable almost everywhere on Ω.

The first stability result we discuss gives sufficient conditions for linear bounded stability
of xe = 0 (the following result is part (a) of Theorem 3.1 in [2]).

Theorem 3.6. Assume that −N is copositive on Γ(SOL′LCS). Then, xe = 0 is linearly
bounded stable. That is, there exists a constant ρ > 0 such that for any x0 ∈ Rn,∥∥x(t,x0)

∥∥ ≤ ρ
∥∥x0

∥∥ , ∀t ≥ 0.

Proof. Let x0 ∈ Rn be arbitrary, and let u0 := u(x0). Note that for all t ≥ 0, φx0(t) =
V̂ (x(t,x0)) is locally Lipschitz continuous and hence, by Theorem 3.5 is differentiable almost
everywhere on (0,∞). Therefore for almost all t ≥ 0, φ′x0(t) exists and equals φ′x0(t+). Also,
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recall that φ′x0(t+) = z(t,x0)T Nz(t,x0). Thus, by copositivity of −N on Γ(SOL′LCS) we
know

φ′x0(t+) ≤ 0, ∀t ≥ 0.

Next, note that for all t ≥ 0,

φx0(t) = φx0(0) +
∫ t

0
φ′x0(s+) ds ≤ φx0(0) = V (x0,u0). (19)

Moreover, we have (using Cauchy-Schwartz inequality and (13))

V (x0,u0) =
[

x0

u0

]T [
P Q
QT R

] [
x0

u0

]
.

= (x0)T Px0 + (x0)T Qu0 + (u0)T QTx0 + (u0)T Ru0

≤ ‖P‖
∥∥x0

∥∥2 + 2 ‖Q‖
∥∥x0

∥∥∥∥u0
∥∥ + ‖R‖

∥∥u0
∥∥2

≤ ‖P‖
∥∥x0

∥∥2 + 2cD ‖Q‖
∥∥x0

∥∥2 + c2
D ‖R‖

∥∥x0
∥∥2

=
(
‖P‖+ 2cD ‖Q‖+ c2

D ‖R‖
) ∥∥x0

∥∥2
.

Thus, we see that there is a constant, ρM > 0 independent of x0 (here ρM = ‖P‖+2cD ‖Q‖+
c2
D ‖R‖) such that

V (x0,u0) ≤ ρM

∥∥x0
∥∥2

. (20)

Thus, by (19) and (20) we have

φx0(t) ≤ ρM

∥∥x0
∥∥2

. (21)

Next, we note that by strict copositivity of M on Γ(u) there exists a constant cM > 0
such that (recall Lemma 3.4),

V (x(t,x0),u(t,x0)) =
[

x(t,x0)
u(t,x0)

]T [
P Q
QT R

] [
x(t,x0)
u(t,x0)

]
≥ cM

∥∥∥∥[
x(t,x0)
u(t,x0)

]∥∥∥∥2

≥ cM

∥∥x(t,x0)
∥∥2

.

Hence,
φx0(t) = V (x(t,x0),u(t,x0)) ≥ cM

∥∥x(t,x0)
∥∥2

. (22)

Then, combining (21) and (22) we have∥∥x(t,x0)
∥∥ ≤ ρ

∥∥x0
∥∥ , (23)

with ρ =
√

ρM
cM

; this completes the proof.

Next, we will follow the authors in [2] by considering the following extension of LaSalle’s
Theorem; the result below is part (c) of Theorem 3.1 in [2].

13



Theorem 3.7. Assume −N is copositive on Γ(SOL′LCS) and we have[
z(t, ξ)T Nz(t, ξ) = 0, ∀t ≥ 0

]
=⇒ ξ = 0.

Then, the equilibrium xe = 0 is asymptotically stable.

To prove the above Theorem, we need the following technical lemma (proof of which
follows closely that of Proposition 3.2 in [2]).

Lemma 3.8. Suppose −N is copositive on Γ(SOL′LCS). Then, for any x0 ∈ Rn the following
statements hold.

1. Ω(x0) 6= ∅.

2. Ω(x0) is positively invariant.

3. There exists a constant κx0 such that

V (x∞,u(x∞)) = κx0 , ∀x∞ ∈ Ω(x0).

4. φ′x∞ ≡ 0 for every x∞ ∈ Ω(x0).

Proof. Let x0 ∈ Rn be arbitrary.
(1): This actually follows from Theorem 3.6; we know that there is a constant ρ > 0

such that x(t,x0) ∈ B̄(x0, ρ
∥∥x0

∥∥) for all t ≥ 0. Take a sequence {tk}tk≥0, such that tk ↑ ∞.
Let xk = x(tk,x0), for k ≥ 0. Then, xk ∈ B̄(x0, ρ

∥∥x0
∥∥) for all k, and hence, there is

a convergent sub-sequence, xkj = x(tkj ,x0) → x∞. Thus, x0 positive limit point, and
therefore Ω(x0) 6= ∅.

(2): We need to show that for every x∞ ∈ Ω(x0), {x(t,x0)}t≥0 ⊆ Ω(x0). Fix x∞ ∈
Ω(x0), then there is a sequence {tk}tk≥0 ↑ ∞, such that

x∞ = lim
k→∞

x(tk,x0).

Note that by semi-group property, we know

x(t + tk,x0) = x(t,x(tk,x0)),∀t ≥ 0

thus, for every t ≥ 0,

lim
k→∞

x(t + tk,x0) = lim
k→∞

x(t,x(tk,x0)) = x(t,x∞),

where we also used continuity of x(t, .) in its second argument. Thus, x(t,x∞) ∈ Ω(x0) for
every t ≥ 0.

(3): By copositivity of −N on Γ(SOL′LCS), we have

φ′x0(t) ≤ 0, ∀t ≥ 0.

Next, we let

w(t) :=
[

x(t,x0)
u(t,x0)

]
,
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and note that by strict copositivity of M on Γ(u),

φx0(t) = w(t)T Mw(t) > 0.

Therefore, φx0(t) is monotone decreasing (non-increasing) and bounded below, and hence
limt→∞ φx0(t) exists; let κx0 := limt→∞ φx0(t) and note that for any x∞ ∈ Ω(x0),

V (x∞,u(x∞)) = κx0 .

(4): Proof of this part follows directly from parts (2) and (3). For any x∞ ∈ Ω(x0) we
have,

φx∞(t) = V (x(t,x∞),u(t,x∞)) = κx0 , ∀t ≥ 0.

Therefore, φ′x0 ≡ 0.

Now, we can go back and prove Theorem 3.7.

Proof. (Proof of Theorem 3.7): By Theorem 3.6, we have the xe = 0 is linearly bounded
stable; that is, there exists a ρ > 0 such that for any x0 ∈ Rn,∥∥x(t,x0)

∥∥ ≤ ρ
∥∥x0

∥∥ , ∀t ≥ 0.

Thus, xe = 0 is stable in the sense of Lyapunov, because given ε > 0, we can let
∥∥x0

∥∥ ≤
δ := ε

ρ to get,
∥∥x(t,x0)

∥∥ ≤ ε for all t ≥ 0. Thus, all that remains to show is the following
convergence property:

for
∥∥x0

∥∥ ≤ δ,
x(t,x0) → 0, as t →∞.

It is sufficient to show Ω(x0) = {0}. Let x∞ ∈ Ω(x0); we claim that x∞ = 0. Note that,

z(t,x∞)T Nz(t,x∞) = φ′x∞(t) = 0, ∀t ≥ 0,

where the last equality follows from part (4) of Lemma 3.8. Therefore, we get x∞ = 0 (by
the second hypothesis of the Theorem). Thus, it follows that Ω(x0) = {0}, which completes
the proof.

3.2 Extension of the Results to non-P Case

It is possible to extend the results of the previous section to cover the case of an LCS(A,B, C, D),
where D is not a P-matrix. Such extension, which is rather non-trivial, is done in [2]. Instead
of discussing the extension in detail, we only make some general comments for this case.
To compensate for loss of P property of D, we make the assumption that B SOL(Cx, D) is
a singleton for all x ∈ Rn. However, this is not the end of the story. We will still assume
existence of a matrix as M defined in the previous section. Moreover, we also need to add
the following assumptions,

� QSOL(Cx, D) is a singleton for all x ∈ Rn,

� R SOL(Cx, D) is a singleton for all x ∈ Rn.

With this added assumptions, and some further technical developments, the authors in [2]
were able to extend the results in the previous section to the non-P case5.

5Actually, they proved more stability results than we covered in the last section, all of which were also
extended to the non-P case.
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4 Concluding Remarks

We noted in our discussion in Section 3 that extending LaSalle’s Theorem in the context
of an LCS forces us to add several assumptions which, one may argue, are not so easy to
check in general. However, as the authors in [2] commented, such practical difficulties do
not stop us in developing extensions to existing theory. Although the conditions for the
extensions we studied in Section 3 are difficult to check in general, it is possible to come-
up with matrix theoretic results which make it easier to check these hypotheses (see for
example Proposition 3.3 in [2]). Moreover, it is possible to further refine such theorems in
more specialized problems with special structures.

References

[1] K. E. Atkinson, An Introduction to Numerical Analysis, John Wiley, 1989.

[2] M. K. Camlibel, J.-S. Pang, and J. Shen, Lyapunov stability of complementarity
and extended systems, SIAM J. Optim., (2006).

[3] R. W. Cottle, J.-S. Pang, and R. E. Stone, The Linear Complementarity Problem,
Academic Press, 1992.

[4] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Com-
plementarity Problems, Springer, 2003.

[5] H. Khalil, Nonlinear Systems, Prentice Hall, 3rd ed., 2001.

[6] J. M. Schumacher, Complementarity systems in optimization, Mathematical Pro-
gramming, (2004).

[7] J. Shen, Lecture notes for Math710A, UMBC, 2007.

[8] J. Shen and J.-S. Pang, Linear complementarity systems: Zeno states, SIAM J.
Control Optim., (2005).

[9] K. T. Smith, Primer of Modern Analysis, Springer, 1983.

16


