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Abstract

Probability density functions are fundamental objects in probability and statistics. Yet,
we cannot define them in the usual sense in infinite-dimensional separable Banach spaces.
This is due to the fact that an analogue of the Lebesgue measure cannot be defined in
such spaces. In this brief note, we provide a concise coverage of these well-known facts.

1 Introduction

A probability density function (PDF) is a familiar notion in probability and statistics. We
usually take PDFs for granted. For example, when we talk about a normally distributed
random variable, we usually think of the normal PDF and its graph—the bell curve. Another
tool we take for granted is the Lebesgue measure. This is the canonical reference measure
in finite dimensions. For example, for a real-valued random variable X with PDF fX, we
define its expectation by

E {X} =

∫
R

xfX(x) dx.

The “dx” in this equation indicates integrating with respect to the Lebesgue measure.
Random variables taking values in Rn, with n ∈ N, can be treated similarly. Namely, for
a random n-vector X with PDF fX, we have E {X} =

∫
Rn

xfX(x) dx. In this case, “dx”
indicates integrating with respect to the n-dimensional Lebesgue measure.

In some applications, one works with random variables taking values in an infinite-
dimensional vector space. For example, this is the case when we study Bayesian formula-
tions of inverse problems with infinite-dimensional parameters [3]. The setting of interest
is the case where the random variable takes values in an infinite-dimensional separable
real Banach space. It is known that we cannot define an analogue of the Lebesgue mea-
sure in such spaces. This also entails that we cannot define a PDF in the usual sense. In
this brief note, we provide a brief discussion of these basic facts. We begin by recalling
some basics about random variables in Section 2. Then, we discuss why an analogue of the
Lebesgue measure cannot be defined in the infinite-dimensional setting in Section 3.

2 Random variables

Here we recall some basics from probability; see, e.g., [4] for further reading. A starting
point in probabilistic formulations is to consider a probability space (Ω,F ,P). In this triple,
Ω is the sample space, F is a suitable σ-algebra on Ω, and P is a probability measure.
Consider a random variable X : Ω → Rn. Equipping Rn with the Borel σ-algebra, B(Rn),
it is common to consider the “image probability space” (Rn,B(Rn),µX), where µX is the
probability measure

µX(E) = P(X ∈ E), E ∈ B(Rn).
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The measure µX is known as the law of the random variable X. If µX is absolutely contin-
uous with respect to the Lebesgue measure, by the Radon–Nikodym theorem, there exists
a unique (in an almost sure sense) non-negative integrable function fX such that

µX(E) =

∫
E

fX(x) dx, E ∈ B(Rn). (2.1)

This fX is the so called Radon–Nikodym derivative of µX with respect to the Lebesgue mea-
sure. In probability and statistics, the function fX in (2.1) is referred to as the probability
density function of the random variable X. Working in the image probability space and
using PDFs are important concepts from a practical point of view. For example, consider
the expected value of X, which is given by

E {X} =

∫
Ω

X(ω)P(dω) =

∫
Rn

xfX(x) dx.

While the first integral is over an abstract (unobservable) sample space Ω, the second one
is an integral over Rn.

Note that for a PDF to exist, the law µX must be absolutely continuous with respect
to the Lebesgue measure. This is not guaranteed to always hold. However, many of
the Rn-valued random variables seen in applications do admit PDFs. The situation in
the infinite-dimensional setting is different: we cannot define a Lebesgue measure in an
infinite-dimensional separable Banach space. Hence, a PDF as we know of cannot be de-
fined in the usual sense in the infinite-dimensional setting.

3 Non-existence of a Lebesgue measure in infinite dimensions

Let (V, ‖·‖) be a normed linear space with R or C as the base field. In what follows
B(x, r) denotes the open ball centered at x with radius r. We denote by S1 the unit sphere
centered at the origin, S1 = {x ∈ V : ‖x‖ = 1}. Moreover, for a subspace M ⊆ V and a
point p ∈ V, we define

dist(p,M) = inf
m∈M

‖p−m‖ .

The following result, known as Riesz’s Lemma (see e.g., [2]), is well-known.

Lemma 3.1 (Riesz). Let (V, ‖·‖) be a normed linear space and suppose M is a proper
closed subspace of V. Then for any α ∈ (0, 1) there exists xα ∈ S1 such that ‖xα −m‖ ≥ α

for all m ∈M .

Proof. Let p ∈ V \M and note that d := dist(p,M) > 0. Take mα ∈M such that ‖p−mα‖ ≤
d/α. Now, set xα = p−mα

‖p−mα‖ . Thus, ‖xα‖ = 1 and for every m ∈M , we have,

‖xα −m‖ =

∥∥∥∥ p−mα

‖p−mα‖
−m

∥∥∥∥
=

1

‖p−mα‖
∥∥p− (mα + ‖p−mα‖m

)∥∥ ≥ d/(d/α) = α.

The following technical result is a consequence of Riesz’s Lemma. The result is stated
for B(0, 1) but can be easily generalized for any open ball.

Lemma 3.2. Let V be an infinite dimensional normed linear space. Then there exists a
countably infinite collection of disjoint balls B(xn, ε), for some ε > 0, inside B(0, 1).

Proof. Let y1 ∈ S1 and let M1 = span{y1}. By Riesz’s Lemma, we know there exists y2 ∈
S1 such that ‖y2 −m‖ ≥ 1/2 for all m ∈ M1. We let M2 = span{y1, y2} and proceeding
inductively, get y3, y4, y5, . . ., such that yn ∈ S1 for all n and for subspaces

Mn = span{y1, . . . , yn},
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we have dist(yn+1,Mn) ≥ 1/2. Successive application of Riesz’s Lemma is justified, because
for all n, Mn is finite-dimensional and is thus a proper closed subspace of V. For the
sequence {yn}∞n=1, we have yn ∈ S1 and ‖yn+1 − yn‖ ≥ 1/2 for all n ∈ N; the latter also
implies, B(yn, 1/4) ∩ B(yn+1, 1/4) = ∅. Hence, the statement of the lemma holds with the
collection of balls given by {B(xn, ε)}∞n=1, with xn = 1

2yn and ε = 1/8.

For any measure on (V,B(V)) to behave similar to the Lebesgue measure it must be a
translation invariant positive measure that assigns a finite measure to open balls. We can
use Lemma 3.2 to prove that such an analogue of the Lebesgue measure cannot be defined
in an infinite-dimensional separable Banach space.

Proposition 3.3. Let V be an infinite dimensional separable Banach space. Then there
exists no non-trivial translation invariant positive measure on (V,B(V)) that is finite on
open balls.

Proof. Suppose µ is a translation invariant positive measure on (V,B(V)) that assigns finite
measures to open balls. By Lemma 3.2 we know that B(0, 1) contains a countably infinite
collection of disjoint balls {B(xn, ε)}∞n=1. By translation invariance, µ(B(xn, ε)) is the same
for every n ∈ N. That is, µ(B(xn, ε)) = ν for a constant ν ∈ [0,∞), for every n ∈ N. If
ν > 0, then we have µ(B(0, 1)) ≥ µ(∪nB(xn, ε)) =

∑
n µ(B(xn, ε)) =

∑
n ν = ∞, which is a

contradiction. Note that we also used the fact that {B(xn, ε)}∞n=1 are disjoint. On the other
hand, if ν = 0, then by separability we can cover the whole space V with countably many
open balls of radius ε and get that µ(V) = 0; i.e., µ is the trivial (zero) measure.

4 Concluding remarks

We cannot define a PDF for function-valued random variables in the sense we are used
to in finite dimensions. However, we can still consider their distribution law. The latter can
be characterized, for example, using its Fourier transform; see, e.g., [1]. When applicable,
we can also use the Radon–Nikodym Theorem to define the density of a probability measure
with respect to another (reference) measure. For example, given two equivalent Gaussian
measures µ1 and µ2 on a Hilbert space, we can define the Radon–Nikodym derivative
dµ1

dµ2
; see e.g., [1, Chapter 2]. A more explicit example comes from Bayesian inversion

in infinite-dimensions. Consider a (properly formulated) Bayesian inverse problem on a
real separable Hilbert space H. In that context, the reference measure is defined by a
prior probability measure µpr on (H,B(H)). This prior measure defines a distribution law
that encodes ones prior knowledge about an inversion parameter. The solution of the
Bayesian inverse problem is given by a posterior probability measure µpost on (H,B(H)).
This posterior measure is a distribution law for the inversion parameter that is conditioned
on the observed data and is consistent with the prior. In this case, for an event E ∈ B(H),

µpost(E) =

∫
E

ρ(z)µpr(dz),

where ρ(z) is given by a suitably normalized data-likelihood. This follows from the infinite-
dimensional version of the Bayes Theorem; see [3], for further details.
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