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Abstract

We consider quadratic functionals of Gaussian random vectors and derive the expressions for
their mean and variance. This note provides a self-contained summary of several well-known
facts about the Gaussian distribution, which are then used to derive the desired result.

1 Introduction

We consider the function

f(x) =
1

2
〈Fx+ c,Q(Fx+ c)〉 , (1.1)

where 〈·, ·〉 denotes the Euclidean inner product, x is an n-dimensional Gaussian random vector,
x ∼ N(m,C), F ∈ Rm×n, c ∈ Rm, and Q ∈ Rm×m is a symmetric matrix. Our goal is to derive
analytic expressions for the mean and variance of f . The derivations rely on results regarding
moments of multivariate Gaussian distribution, which have been studied extensively in the
probability and statistic literature; see, e.g., [1, 2, 3]. In this note, we require the following:

Proposition 1.1. Suppose x ∼ N(0,C) is an n-dimensional Gaussian random vector. Then,
for i, j, k, ` ∈ {1, . . . , n},

(a). E{xixjxk} = 0.

(b). E{xixjxkx`} = CijCk` + CikCj` + Ci`Cjk.

The above result is a special case of general results [1, 2, 3] for moments of the form
E{xi1xi2 · · ·xis}, where {i1, i2, . . . .is} ⊆ {1, . . . , n}.

2 The derivations

The following result follows from definition of the covariance matrix and Proposition 1.1.

Proposition 2.1. Suppose x ∼ N(0,C), and let A ∈ Rn×n be a symmetric matrix and a and b

be fixed vectors in Rn. Then, we have

(a). E{〈a,x〉 〈b,x〉} = 〈a,Cb〉,
(b). E{〈x,Ax〉} = tr(AC),

(c). E{〈x,a〉 〈Ax,x〉} = 0,

(d). E{〈x,Ax〉2} = 2tr
[
(AC)2

]
+
[
tr(AC)

]2
.

Proof. The statement (a) follows from E{〈a,x〉 〈b,x〉} =
∑
i,j

aibjE{xixj} =
∑
i,j

aibjCij = 〈a,Cb〉.

The second statement follows from

E{〈x,Ax〉} =
∑
i,j

AijE{xixj} =
∑
i,j

AijCij =
∑
i

(AC)jj = tr(AC).
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For part (c), we note, E{〈x,a〉 〈Ax,x〉} =
∑
i,j,k

aiAjkE{xixjxk} = 0, where we also used Theo-

rem 1.1(a). To see the statement (d), we note

E{〈x,Ax〉2} =
n∑

i,j,k,`=1

AijAk`E{xixjxkx`} =
n∑

i,j,k,`=1

AijAk`

(
CijCk` + CikCj` + Ci`Cjk

)
,

where we have used Proposition 1.1(b). We distribute the summation over the three terms in
the bracket and note that the first term is given by

n∑
i,j,k,`=1

AijAk`CijCk` =
(∑

i,j

AijCij

)(∑
k,`

Ak`Ck`

)
=
[
tr(AC)

]2
. (2.1)

Next, we note that the second term
∑n

i,j,k,`=1 AijAk`CikCj` simplifies as follows.

n∑
i,j,k,`=1

AijAk`CikCj` =
∑
i,k,`

(
A`kCki

(∑
j

AijCj`

))
=
∑
i,`

(
AC

)
`i

(
AC

)
i`
=
∑
i

(AC)2ii = tr
[
(AC)2

]
.

A similar calculation shows that the third term satisfies
∑n

i,j,k,`=1 AijAk`Ci`Cjk = tr
[
(AC)2

]
,

and thus, the result follows.

Remark 2.2. Note that parts (a) and (b) of Proposition 2.1 do not require the Gaussian as-
sumption on x, and hold for any centered random n-vector with a covariance matrix C.

It is straightforward to extend Proposition 2.1 to the case of non-centered Gaussian random
vectors. This is recorded in the following proposition:

Proposition 2.3. Suppose x ∼ N(m,C), and let A ∈ Rn×n be a symmetric matrix and a and
b be fixed vectors in Rn. We have,

(a). E{〈a,x〉 〈b,x〉} = 〈a,Cb〉+ 〈a,m〉 〈b,m〉,
(b). E{〈x,Ax〉} = tr(AC) + 〈m,Am〉,
(c). E{〈x,Ax〉 〈x, b〉} =

(
tr(AC) + 〈m,Am〉

)
〈m, b〉+ 2 〈b,CAm〉,

(d). E{〈x,Ax〉2} = 2tr
[
(AC)2

]
+ tr(AC)2 +

[
2tr(AC) + 〈m,Am〉

]
〈m,Am〉+4 〈Am,CAm〉.

Proof. Part (a) follows directly from Proposition 2.1(a) and using

〈a,x〉 〈b,x〉 = 〈a,x−m〉 〈b,x−m〉+ 〈a,x〉 〈b,m〉+ 〈a,m〉 〈b,x〉 − 〈a,m〉 〈b,m〉 .

Similarly, part (b) follows from 〈Ax,x〉 = 〈x−m,A(x−m)〉+2 〈x,Am〉−〈m,Am〉 and Propo-
sition 2.1(b). To show part (c), we note that

〈x,Ax〉 〈x, b〉 = 〈x−m,A(x−m)〉 〈x−m, b〉
+ 〈x,Ax〉 〈m, b〉+ 2 〈x,Am〉 〈x, b〉 − 2 〈x,Am〉 〈m, b〉 − 〈m,Am〉 〈x, b〉+ 〈m,Am〉 〈m, b〉 ,

and use parts (a) and (b) along with Proposition 2.1(c). Proof of part (d), which builds on the
results of previous parts and Proposition 2.1, is similar and is ommitted for brevity.

3 Mean and variance of f

We are ready to derive the expressions for the mean and variance of f defined in (1.1):

Proposition 3.1. Let f(x) be as in (1.1). We have

(a). E{f(x)} = 1
2 tr(HC) + 1

2 〈m,Hm〉+ 〈m, b〉+ 1

2
〈c,Qc〉,

(b). var{f(x)} = 1
2 tr
[
(HC)2

]
+ 〈Hm+ b,C(Hm+ b)〉,

where H = F>QF and b = F>Qc.

2



Moments of quadratic functionals

Proof. Note that

f(x) =
1

2
〈Fx,QFx〉+ 〈Fx,Qc〉+ 1

2
〈c,Qc〉 = 1

2
〈x,Hx〉+ 〈x, b〉+ 1

2
〈c,Qc〉 .

Part (a) of the proposition follows from Proposition 2.3. To derive the variance expression, it is
convenient to drop the constant term 1

2 〈c,Qc〉 and consider g(x) = 1
2 〈x,Hx〉+〈x, b〉. We have,

E{g(x)2} = E
{(1

2
〈x,Hx〉+ 〈x, b〉

)2}
=

1

4
E{〈x,Hx〉2}+ E{〈x,Hx〉 〈x, b〉}+ E{〈x, b〉2}.

Noting that var{f(x)} = var{g(x)} = E{g(x)2} − E{g(x)}2, the expression for variance in part
(b) of the proposition follows from Proposition 2.3 and some algebraic manipulations.
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