
A brief note on linear multistep methods

Alen Alexanderian*

Abstract

We review some key results regarding linear multistep methods for solving initial value prob-
lems. Moreover, we discuss some common classes of linear multistep methods.

1 Basic theory

Here we provide a summary of key results regarding stability and consistency of linear mul-
tistep methods. We focus on the initial value problem,

y′ = f(x, y), x ∈ [a, b], y(a) = y0. (1.1)

Here y(x) ∈ R is the state variable, and all throughout, we assume that f satisfies a uniform
Lipschitz condition with respect to y.

Definition of a multistep method. The generic description of a linear multistep method
is as follows: define nodes xn = a+ nh, n = 0, . . . , N , with h = (b− a)/N . The general form of a
multistep method is

yn+1 =

p∑
j=0

αjyn−j + h

p∑
j=−1

βjf(xn−j , yn−j), n ≥ p. (1.2)

Here {αi}pi=0, and {βi}pi=−1 are constant coefficients, and p ≥ 0. If either αp 6= 0 or βp 6= 0, then
the method is called a p + 1 step method. The initial values, y0, y1, . . . , yp, must be obtained
by other means (e.g., an appropriate explicit method). Note that if β−1 = 0, then the method
is explicit, and if β−1 6= 0, the method is implicit. Also, here we use the convention that y(xn)
is the exact value of y at xn and yn is the numerically computed approximation to y(xn); i.e.,
yn ≈ y(xn).

Truncation error and accuracy. The local trunction error of the method is defined by

Tn(y;h) =
1

h

y(xn+1)−

 p∑
j=0

αjy(xn−j) + h

p∑
j=−1

βjf(xn−j , y(xn−j))

 . (1.3)

Note that in many texts, τn(y) is used to denote the Tn(y;h) defined above. The present nota-
tion is adapted from [2]. Note also that we can rewrite the expression for the local truncation
error as,

Tn(y;h) =
1

h

y(xn+1)−

 p∑
j=0

αjy(xn−j) + h

p∑
j=−1

βjy
′(xn−j)

 ,
which defines the local truncation error for integrating y′(x).

Next, we define,
τ(h) := max

xp≤xn≤b
|Tn(y;h)|.

We say the method is consistent if

τ(h)→ 0, as h→ 0. (1.4)

*North Carolina State University, Raleigh, NC, USA. E-mail: alexanderian@ncsu.edu
Last revised: April 27, 2022.

mailto:alexanderian@ncsu.edu

On linear multistep methods

The speed of convergence of the numerical solution to the true solution is related to the speed
of convergence in (1.4). Hence, we need to understand the conditions under which

τ(h) = O(hm), (1.5)

as h→ 0. The largest value of m for which this holds is called the order of the method (1.2).

Theorem 1.1 ([1, Theorem 6.5]). Let m ≥ 1 be an integer. For (1.4) to hold for all continuously
differentiable functions y(x), that is for the method (1.2) to be consistent, it is necessary and
sufficient that

p∑
j=0

αj = 1, −
p∑
j=0

jαj +

p∑
j=−1

βj = 1. (1.6)

For (1.5) to hold for all y(x) that are m+1 times continuously differentiable, it is necessary and
sufficient that (1.6) hold and that

p∑
j=0

(−j)iαj + i

p∑
j=−1

(−j)i−1βj = 1, i = 2, 3, . . . ,m.

Examples. The following is an example of a linear multistep method, known as the midpoint
method:

yn+1 = yn−1 + 2hf(xn, yn), n ≥ 1

Notice that y1 needs to be computed before the iterations can begin. This can be done via one
step of explicit Euler: y1 = y0 + hf(x0, y0).

The truncation error for this method is given by:

Tn(y;h) =
1

h
[y(xn+1)− y(xn−1)− 2hy′(xn)] . (1.7)

To compute this, we use Taylor expansion of y(xn+1) and y(xn−1):

y(xn+1) = y(xn) + hy′(xn) +
h2

2
y′′(xn) +

h3

6
y′′′(xn) +O(h4),

y(xn−1) = y(xn)− hy′(xn) +
h2

2
y′′(xn)−

h3

6
y′′′(xn) +O(h4).

Substituting Taylor expansions of y(xn+1) and y(xn−1) in (1.7), we have

Tn(y;h) =
1

h

[
y(xn) + hy′(xn) +

h2

2
y′′(xn) +

h3

6
y′′′(xn) +O(h4)

−y(xn) + hy′(xn)−
h2

2
y′′(xn) +

h3

6
y′′′(xn) +O(h4)− 2hy′(xn)

]
=
h2

3
y′′′(xn) +O(h3).

This shows, in particular, that the method is second order.

The following is another example of a linear multistep method:

yn+1 = 3yn − 2yn−1 +
h

2
[f(xn, yn)− 3f(xn−1, yn−1)], n ≥ 1. (1.8)

Using a similar approach as above, we can compute the truncation error for this method:

Tn(y;h) =
7

12
h2y′′′(xn) +O(h3).

Thus, this is also a second order method.

A simple but useful convergence result. The following convergence result is Theorem
6.6 in [1]. While this is not the most general convergence result for linear multistep methods,
it applies to a wide class of such methods.

2

On linear multistep methods

Theorem 1.2. Consider solving the initial value problem (1.1) using the linear multistep method (1.2)
with a step size h to obtain {yn}Nn=0 that approximate {y(xn)}Nn=0. Let the initial errors satisfy,

η(h) := max
0≤n≤p

|y(xn)− yn| → 0, as h→ 0.

Assume that the method is consistent, and assume that the coefficients {αj}pj=0 in (1.2) are
non-negative. Then, the method is convergent, and

max
a≤xn≤b

|y(xn)− yn| ≤ c1η(h) + c2τ(h),

where c1 and c2 are suitable constants. If the method is of order m, and if the initial errors
satisfy η(h) = O(hm), then the speed of convergence is O(hm).

Remark 1.3. The above result states that to ensure a rate of convergence of O(hm) for the
method (1.2), it is necessary that the method be of order m, i.e, each step has an error of
O(hm+1) (recall truncation error (1.3) is this error divided by h). However, the initial values
y0, . . . , yp need to be computed with only an accuracy of O(hm). Thus, the initial values can be
computed with a lower order method. This is also noted in [1, p. 361]. As an example, and
as mentioned before, the midpoint method, which is of second order, can be initialized with
explicit Euler, which is only first order accurate.

General stability and convergence theory. To obtain a more general convergence re-
sult, without the non-negativity assumption on αj , we need to investigate the stability of the
method (1.2) more closely. The general theory is rather involved and is discussed in texts such
as [1, 2, 3]. The stability of (1.2) is linked to the polynomial

ρ(r) = rp+1 −
p∑
j=0

αjr
p−j .

We note immediately that by the consistency condition, we have ρ(1) = 0. Let r0, r1, . . . , rp
denote roots of ρ, repeated according to their multiplicity, and let r0 = 1. The method (1.2)
satisfies the root condition if the following hold:

|rj | ≤ 1, j = 0, 1, . . . , p (1.9)

|rj | = 1⇒ ρ′(rj) 6= 0. (1.10)

We note that (1.9) requires all roots of ρ lie inside the unit circle {z ∈ C : |z| ≤ 1}, and (1.10)
states that the roots on the boundary of the unit circle are to be simple roots (i.e., of multiplicity
one) of ρ(r).

A key result on linear multistep methods says that (1.2) is stable if and only if the root
condition holds. The general convergence result for linear multistep methods states that a
consistent linear multistep method is convergent if and only if it satisfies the root condition;
see [1, 2] for more details.

As an example, consider the midpoint method described above. For that method

ρ(r) = r2 − 1,

which has roots r = ±1. Therefore, the method satisfies the root condition, and is thus stable.
Next, we study stability of (1.8). The method has α0 = 3 and α1 = −2 and thus, for this method,

ρ(r) = r2 − 3r + 2 = (r − 1)(r − 2),

which has roots r1 = 1 and r2 = 2 and thus violates the root condition. Therefore, the
method (1.8) is unstable.

2 Some commonly used linear multistep methods.

We will focus on the following classes of methods:

1. Backward differentiation formulas (BDFs)
2. Adams methods

(a) Adams–Bashforth (explicit)
(b) Adams–Moulton (implicit)

3. Predictor corrector methods

3

On linear multistep methods

2.1 Backward differentiation formulas

These methods are obtained based on numerical differentiation formulas.

Basic idea: Interpolate past values of y(x), and then differentiate the interpolating polyno-
mial to approximate y′.

Specifically, let q(x) be the polynomial of degree ≥ p that interpolates y(x) at the points
xn+1, xn, . . . , xn−p+1, for some p ≥ 1:

q(x) =

p−1∑
j=−1

y(xn−j)`j(x), (2.1)

where `j(x)’s are elementary Lagrange polynomials. We then use,

q′(xn+1) ≈ y′(xn+1) = f(xn+1, y(xn+1)); (2.2)

combine this with (2.1), and solve for y(xn+1) to obtain a formula of the form

y(xn+1) ≈
p−1∑
j=0

αjy(xn−j) + hβf(xn+1, y(xn+1)),

for approximating y(xn+1). This leads to the definition of the p-step BDF formula:

yn+1 =

p−1∑
j=0

αjyn−j + hβf(xn+1, yn+1).

The coefficients {αj} and β can be obtained for specific choices of p, by using the appropriate
numerical differentiation formula. Note that all we are doing is finding a numerical differentia-
tion formula to approximate y′(xn+1) using function values at xn+1, xn, . . . , xn−p+1. The useful
cases are p = 1, . . . , 6, coefficients for which can be found in [1, p. 411]. Note that p-step BDF
formulas with p ≥ 7 are unstable, and should not be used; see [4, p. 381].

Examples of BDF methods. We consider a couple of examples to help clarify matters.
Consider the case of p = 1. In that case q(x) is just the linear interpolating polynomial that
interpolates y at the nodes xn and xn+1 (drawing a picture might be helpful), for which q′(x) =
(y(xn+1)− y(xn))/h. Substituting this in (2.2) gives,

y(xn+1)− y(xn)
h

≈ f(xn+1, y(xn+1)),

which leads to the approximation:

y(xn+1) ≈ y(xn) + hf(xn+1, y(xn+1)).

This gives the numerical method

yn+1 = yn + hf(xn+1, yn+1),

which is none but backward Euler!

Next, let us consider p = 2. In this case, we can derive the numerical differentiation formula
for y′(xn+1) using function values at xn+1, xn, and xn−1:

y′(xn+1) ≈
3y(xn+1)− 4y(xn) + y(xn−1)

2h
.

Using this in (2.2), we obtain

3y(xn+1)− 4y(xn) + y(xn−1)

2h
≈ f(xn+1, y(xn+1)).

Following the same steps as outlined above, gives the BDF2 method:

yn+1 =
4

3
yn −

1

3
yn−1 +

2h

3
f(xn+1, yn+1), n ≥ 1.

Remark 2.1. The BDF methods described above are implicit linear multistep methods that are
suitable for stiff problems.

4

On linear multistep methods

2.2 Adams methods

These methods are derived by doing quadrature in

y(xn+1) = y(xn) +

∫ xn+1

xn

f(t, y(t)) dt.

Basic idea:

• In the case of Adams–Bashforth (AB): Replace y′(t) = f(t, y(t)) by the interpolating poly-
nomial p(t) that interpolates y′(t) at

xn−k+1, . . . , xn−1, xn, (for some k ≥ 1),

and then use the approximation

y(xn+1) ≈ y(xn) +
∫ xn+1

xn

p(t) dt,

This leads to formulas of the form

yn+1 = yn + h

k−1∑
j=0

βjf(xn−j , yn−j).

• In the case of Adams–Moulton (AM), we proceed similarly to Adams–Bashforth, but inter-
polate y′(t) = f(t, y(t)) at the k + 1 points,

xn−k+1, . . . , xn−1, xn, xn+1, (for some k ≥ 0).

This leads to (implicit) formulas for the form:

yn+1 = yn + h

k−1∑
j=−1

βjf(xn−j , yn−j).

Remark 2.2. We record the following remarks regarding AB/AM methods.

• The naming convention for AB and AM methods is ABq and AMq, where q is the order of
the method; e.g., a third order Adams–Bashforth method is referred to as AB3.

• AB methods are explicit, AM methods are implicit.
• p-step AB has order p.
• p-step AM has order p + 1 (an exception is AM1, the backward Euler method, which is a

one-step of order 1).
• The AM formulas have a considerably smaller truncation error than the AB formulas with

comparable order; see [1, p. 389].

Examples. It is straightforward to check (left as exercises) that AB1 which is forward Euler,
AM1 is backward Euler, and AM2 is the trapezoidal rule. As an illustration, we derive the AB2
method. To this end, we interpolate y′(x) at nodes xn−1 and xn:

p1(x) = y′(xn−1) +
y′(xn)− y′(xn−1)

h
(x− xn−1).

Thus, we have

y(xn+1) ≈ y(xn) +
∫ xn+1

xn

p1(t) dt = y(xn) + h

[
3

2
y′(xn)−

1

2
y′(xn−1)

]
= y(xn) + h

[
3

2
f(xn, y(xn))−

1

2
f(xn−1, y(xn−1))

]
,

from which we obtain the numerical scheme (AB2):

yn+1 = yn + h

[
3

2
f(xn, yn)−

1

2
f(xn−1, yn−1)

]
.

Remark 2.3. Note that the derivation of the above methods also shows how to derive the
respective truncation errors1 , all going back to the truncation error for the interpolant used.
Also, for a specific method you can derive the truncation error using the general strategy for
linear multistep methods discussed earlier.

1The expressions for these exist, and can be found in standard references.

5

On linear multistep methods

2.3 Predictor corrector formulas

Adams methods are typically applied in pairs as follows: take an ABq (or AB(q-1)) step and
use the result as the initial iterate for AMq, which is an implicit method. Then, take one Picard
iteration for AMq. In this setting, the AB method acts as the predictor and the AM method the
corrector. For example, AM2 with the AB1 as predictor is just the trapezoidal method with the
forward Euler predictor. A less trivial example is the following method with AB3-AM4:

ŷn+1 = yn +
h

12
[23f(xn, yn)− 16f(xn−1, yn−1) + 5f(xn−2, yn−2)] (AB3)

yn+1 = yn +
h

24
[9f(xn+1, ŷn+1) + 19f(xn, yn)− 5f(xn−1, yn−1) + f(xn−2, yn−2)] (AM4)

The procedure just described is known as the PECE method (Predict-Evaluate-Correct-Evaluate).
The procedure, for a pair of Adams methods—ABq and AMq—is summarized in Algorithm 1.

Algorithm 1 Computations at step n of a PECE method using an ABq–AMq pair. We use the
notation fi = f(xi, yi).

ŷn+1 = yn + h
∑q−1
j=0 βjfn−j {Predict}

f̂n+1 = f(xn+1, ŷn+1) {Evaluate}

yn+1 = yn + h
[
β−1f̂n+1 +

∑q−2
j=0 βjfn−j

]
{Ccorrect}

fn+1 = f(xn+1, yn+1) {Evaluate}

Remark 2.4. We record the following remarks:

• PECE methods make sense if the corrector is more accurate than the predictor, not nec-
essarily in terms of order, but at least in terms of the size of the error coefficients. The
benefit of using a PECE method is improved accuracy.

• Note that two evaluations of f are needed at each step.
• The second evaluation in the above algorithm is done in preparation for the next iteration.

To illustrate further, we provide a basic Matlab implementation of the PECE method based
on using AB3-AM4 in Appendix A.

3 Stiff problems, A-stability, and A(α) stability

When discussing A-stability, we consider the model IVP

y′ = λy, x ≥ 0, Reλ < 0.

Definition 3.1. A p + 1 step linear multistep method is called A-stable if, when applied to the
above model IVP, it produces a grid function {yn}n≥0 satisfying yn → 0, regardless of the choice
of starting values y0, y1, . . . , yp.

The following result, due to Dahlquist (see e.g., [5, p. 247]) shows that multistep methods
have severe limitations as with regards to A-stability.

Theorem 3.2. An A-stable multistep method must be of order p ≤ 2.

Identifying the stability regions for general linear multistep methods can become compli-
cated in general but can be facilitated via computers; see [6, Chapter 7]. Let us consider the
BDFk methods. It is known that BDF1 and BDF2 are A-stable (BDF1 is just implicit Euler). In
Figure 1 (left), we show the stability regions for BDFk, k = 1, . . . , 6. The stability regions in these
plots are outside of the shaded regions. As can be seen, the stability regions of BDFk include
the entire left half of the complex plane only for k = 1 and k = 2. However, we note that for
k = 3, . . . , 6, the stability regions includes all but a small part of the left half of the complex
plane. This motivates the definition of weaker variants of the notion of A-stability. Specifically,
we consider the so called A(α)-stable methods:

Definition 3.3. A method is A(α)-stable, α ∈ (0, π/2), if its stability region contains the wedge-
like region Wα = {z ∈ C : |arg(−z)| < α, z 6= 0}.

6

On linear multistep methods

Figure 1: Left: stability regions for BDF1–BDF6. The regions of absolute stability are the exterior
of the shaded regions. Right: stability region for BDF6, along with (a part of) the corresponding
Wα region.

While BDF1 and BDF2 methods are A-stable, BDFk methods, with k = 3, . . . , 6 are A(α)-
stable, with α = 86.03◦, 73.35◦, 51.84◦, 17.84◦, respectively. we illustrate the stability region for
BDF6 and the corresponding Wα in Figure 1 (right).

References

[1] Kendall E. Atkinson. An introduction to numerical analysis. John Wiley & Sons Inc., New York, second
edition, 1989.

[2] Gautschi, Walter. Numerical analysis. Springer Science & Business Media, 2011.

[3] Isaacson, Eugene, and Herbert Bishop Keller. Analysis of numerical methods. Courier Corporation,
1994.

[4] Hairer, Ernst and Nørsett, Syvert P and Wanner, Gerhard. Solving ordinary differential equations. I,
volume 8 of Springer Series in Computational Mathematics. Springer, 1993.

[5] Hairer, E., and Wanner, G. Solving ordinary differential equations II. Stiff and differential-algebraic
problems. Second revised edition, Springer Series in Computational Mathematics, 14. Springer-Verlag,
Berlin, 2010.

[6] LeVeque, Randall J. Finite difference methods for ordinary and partial differential equations: steady-
state and time-dependent problems. SIAM, 2007.

7

On linear multistep methods

A Matlab implementation of AB3-AM4 PECE method

function [t y] = ab3am4(f, a, b, y0, n)
% implementation of a 4th order Adams-Bashforth-Moulton PECE method for
%
% y’ = f(t, y), y(0) = y0
%
% we use the 3-step Adams-Bashforth (AB3) method as a precdictor, and
% 3-step Adams-Moulton (AM4) method as a corrector;
% an RK3 method is used to initialize the starting values
%
% Input:
% f: the right hand side function f(t,y)
% a,b: end points of the integration time interval
% y0: initial condition
% n: number of sub-intervals in time grid
% Output:
% t: vector of time steps
% y: computed numerical solution

%
% initialization/memory pre-allocation
%
h = (b - a) / n;
p = 2; % assuming n > 3
d = length(y0); % dimension of state vector
t = zeros(1, n+1);
y = zeros(d, n+1);
F = zeros(d, n+1);

y(:,1) = y0; % initial state
t(1) = a;

% compute y_1, y_2 using RK3
F(:, 1) = f(t(1), y(:, 1)); % initial f evaluation
for i = 1 : p

t(i+1) = t(i) + h;
k_1 = F(:, i);
k_2 = f(t(i) + 0.5*h, y(:,i) + 0.5*h*k_1);
k_3 = f(t(i) + h, y(:,i) + h*(-k_1 + 2*k_2));
y(:,i+1) = y(:,i) + h * (1/6)*(k_1 + 4*k_2 + k_3); % advance in time

F(:,i+1) = f(t(i+1), y(:,i+1)); % keeping track of f evaluations for efficiency
end

%
% Main loop of PECE algorithm
%
for i = p+1 : n

t(i+1) = t(i) + h;

% Predict (via AB3 predictor)
yhat = y(:,i) + (h/12) * (23 * F(:,i) - 16 * F(:,i-1) + 5 * F(:,i-2));

% Evaluate
fhat = f(t(i+1), yhat);

% Correct (via AM4 corrector)
y(:,i+1) = y(:,i) + (h/24) * (9 * fhat + 19 * F(:,i) - 5 * F(:,i-1) + F(:,i-2));

% Evaluate
F(:,i+1) = f(t(i+1), y(:,i+1));

end

8

	Basic theory
	Some commonly used linear multistep methods.
	Backward differentiation formulas
	Adams methods
	Predictor corrector formulas

	Stiff problems, A-stability, and A() stability
	References
	Matlab implementation of AB3-AM4 PECE method

