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Abstract

We discuss matrix Lie groups and their corresponding Lie algebras. Some common
examples are provided for purpose of illustration.

1 Introduction

The goal of these brief note is to provide a quick introduction to matrix Lie groups
which are a special class of abstract Lie groups. Study of matrix Lie groups is a fruitful
endeavor which allows one an entry to theory of Lie groups without requiring knowl-
edge of differential topology. After all, most interesting Lie groups turn out to be matrix
groups anyway.

An abstract Lie group is defined to be a group which is also a smooth manifold,
where the group operations of multiplication and inversion are also smooth. We provide
a much simple definition for a matrix Lie group in Section 4. Showing that a matrix Lie
group is in fact a Lie group is discussed in standard texts such as [2].

We also discuss Lie algebras [1], and the computation of the Lie algebra of a Lie
group in Section 5. We will compute the Lie algebras of several well known Lie groups
in that section for the purpose of illustration.

2 Notation

Let V be a vector space. We denote by gl(V) the space of all linear transformations
on V. If V is a finite-dimensional vector space we may put an arbitrary basis on V and
identify elements of gl(V) with their matrix representation.

The following define various classes of matrices on Rn:
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gl(n) : the space of n× n real matrices
(general linear algebra)

sl(n) : the space of n× n real traceless matrices
(special linear algebra)

so(n) : the space of n× n real skew-symmetric matrices
GL(n) : the group of n× n real invertible matrices

(general linear group)
SL(n) : the group of n× n real matrices with determinant 1

(special linear group)

O(n) : the group of n× n real orthogonal matrices
(orthogonal group)

SO(n) : the group of n× n real orthogonal matrices with determinant 1
(special orthogonal group)

In this

note we will be working with real matrix groups. Parallel developments for complex ma-
trix groups can be done easily.

3 Topology of gl(n)

The space gl(n) becomes an inner product space when equipped with the inner prod-
uct,

〈A,B〉 = tr(ABT ) =

n∑
i,j=1

AijBij , ∀A,B ∈ gl(n).

This inner product also induces a norm:

‖A‖ = 〈A,A〉1/2 =

n∑
i,j=1

|Aij |2, ∀A,B ∈ gl(n). (3.1)

Since gl(n) is finite-dimensional all norms are equivalent on gl(n), and hence they all
induce the same topology. It is convenient to work with the norm in (3.1) as it is the
analog of the Euclidean two-norm on Rn,

|x| =
( n∑

i=1

|xi|2
)1/2

, x ∈ Rn.

Let {Ak} be a sequence of matrices. We say, Ak converges to A ∈ gl(n) if

‖Ak −A‖ → 0, as k →∞. (3.2)

It is simple to see that (3.2) is equivalent to componentwise convergence:

(Ak)ij → (A)ij , as k →∞. (3.3)

Using completeness of R, and (3.3), we know gl(n) is also a complete inner product
space – a Hilbert space. Let S be a subset of gl(n). We say S is bounded if there exists a
real number C > 0 such that ‖A‖ ≤ C for every A ∈ S. We say S is closed if it contains
all its limit points. That is, if {Ak} is any sequence in S such that Ak → A, for some
A ∈ gl(n), then A ∈ S.

Finally, since gl(n) is finite-dimensional, by the Heine-Borel Theorem, a subset of
gl(n) is compact if and only if it is closed and bounded.
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4 Matrix Lie groups

Let us begin by the definition of a matrix Lie group [2]:
Definition 4.1. A matrix Lie group is a subgroup G ⊆ GL(n) with the following prop-
erty: If {Ak} is a convergent sequence in G, Ak → A for some A ∈ gl(n), then either
A ∈ G, or A is not invertible.
Remark 4.2. An equivalent way of definiting matrix Lie groups is to define them as
closed subgroups of GL(n).

4.1 Examples

Let us look at some examples of matrix Lie groups here:

(a) The general linear group GL(n): This is clearly a matrix Lie group.
(b) The special linear group SL(n): To see this is a matrix Lie group note that if {Ak}

is a sequence in SL(n), det(Ak) = 1, such that Ak → A, then by continuity of the
determinant det(A) = 1 also; therefore, A ∈ SL(n).

(c) The orthogonal group O(n): Recall that A ∈ O(n) if and only if ATA = I. Now let
{Ak} be a sequence in O(n) such that Ak → A. Passing to limit in the equation
AT

kAk = I gives that ATA = I; that is, A ∈ O(n).
(d) The special orthogonal group SO(n): The proof that SO(n) is a matrix Lie group

combines the arguments for SL(n) and O(n) above.
Remark 4.3. The general linear group is not a compact group (consider for example
the unbounded sequence given by {Ak = kI, k ≥ 0} ⊂ GL(n)). The special linear group,
SL(n) is also non-compact (except for the trival case of n = 1).
Remark 4.4. The groups O(n), and SO(n) are compact Lie groups. Moreover, let us
note that these groups are in fact closed in gl(n).

5 Lie algebras

In this section, we look at Lie algebras [1] very briefly.
Definition 5.1 (Lie Algebra). A lie algebra over a field F is an F-vector space L along
with a bilinear mapping, the Lie bracket, [·, ·] : L× L → L which satisfies the following:

(a) [x, x] = 0, ∀x ∈ L.
(b) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, ∀x, y, z ∈ L.

The bracket [x, y] is commonly referred to as the commutator of x and y. The condi-
tion (b) in the definition is known as the Jacobi identity.
Definition 5.2 (Lie subalgebra). Given a Lie Algebra L a Lie subalgebra of L is a
subspace K ⊆ L such that

[x, y] ∈ K, ∀x, y ∈ K.

As an example of a Lie algebra, consider gl(V) for a finite-dimensional vector space
V, where the Lie bracket of x, y ∈ gl(V ) is given by,

[x, y] = x ◦ y − y ◦ x. (5.1)

Verifying that this satisfies properties of a Lie bracket is an straightforward exercise
(though it is said to be one of those exercises every mathematician should do at least
once).
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In particular, gl(n) is a Lie algebra with the Lie bracket defined as in (5.1). As another
example, sl(n) is also a Lie algebra when equipped with the Lie bracket in (5.1). Thus,
sl(n) is a Lie-subalgebra of of gl(n).

6 The exponential map

Let A ∈ gl(n), we define the exponential of A, eA ∈ gl(n) as follows,

eA =

∞∑
k=0

Ak

k!
.

The proof of convergence of the above series is standard and is well known.

The following theorem summarizes some important properties of the matrix expo-
nential.
Theorem 6.1. Let A,B ∈ gl(n). Then the following hold:

(a) e0 = I.
(b) (eA)T = eA

T

.
(c) eA is invertible and (eA)−1 = e−A.
(d) If A and B commute, then eA+B = eAeB = eBeA.
(e) If S ∈ GL(n), then eSAS−1

= SeAS−1.
(f) det(eA) = etr(A).
(g) d

dte
tA = AetA = etAA.

The following theorem is also important.
Theorem 6.2. Let A,B ∈ gl(n). Then,

eA+B = lim
k→∞

(
e

A
k e

B
k

)k
. (6.1)

7 The Lie algebra of a Lie group

Let G be a matrix Lie group. We define, Lie(G) by

Lie(G) = {A ∈ gl(n) : etA ∈ G, ∀t ∈ R}.

Let us we show that Lie(G) is a vector subspace of gl(n). Let A,B ∈ Lie(G). Then, we
have

et(A+B) = lim
k→∞

(
e

tA
k e

tB
k

)k
∈ G,

where the last conclusion uses the fact that G is closed in GL(n). Therefore, A + B ∈
Lie(G). Also, if A ∈ Lie(G) and α ∈ R, then, clearly αA ∈ Lie(G). Therefore, Lie(G) is
also closed under scalar multiplication. Hence, Lie(G) is a vector subspace of gl(n).

Next, we show that Lie(G) is closed under the Lie bracket in (5.1). That is, for any A
and B in Lie(G), we show [A,B] ∈ Lie(G), where [A,B] = AB −BA. First, we will need
the following basic result.
Lemma 7.1. Let G be a matrix Lie group. Let A ∈ G and X ∈ Lie(G) Then, AXA−1 ∈
Lie(G).

Proof. Note that, etAXA−1

= AetXA−1 ∈ G for every t ≥ 0 and hence the result.
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Now we get back at showing [A,B] ∈ Lie(G) for all A,B ∈ Lie(G). Let us define,

Λ(t) = etABe−tA,

Note that by Lemma 7.1, Λ(t) ∈ Lie(G) for all t ≥ 0.

Next, we observe,
Λ′(t) = AetABe−tA − etABAe−tA.

Therefore,

AB −BA = Λ′(0) = lim
h→0

Λ(h)−B
h

∈ Lie(G),

where the last conclusion follows from the already established fact that Lie(G) is a
vector subspace of gl(n) and hence closed in norm topology of gl(n). As a result of the
above discussion we have the following result:
Theorem 7.2. Let G be a matrix Lie group. Then, Lie(G) is a Lie subalgebra of gl(n)

with the Lie bracket given in (5.1).

7.1 Examples

For the purpose of illustration, we now compute the Lie algebra of matrix Lie groups
which we looked at in Section 4.

(a) The general linear group GL(n): If G = GL(n), then,

Lie(G) = {A ∈ gl(n) : etA ∈ GL(n), ∀t ∈ R}
= gl(n),

where the last conclusion follows from the fact that eA is invertible for all A ∈
gl(n).

(b) The special linear group SL(n): If G = SL(n), then

Lie(G) = {A ∈ gl(n) : etA ∈ SL(n), ∀t ∈ R}
= {A ∈ gl(n) : det(etA) = 1,∀t ∈ R}

= {A ∈ gl(n) : et tr(A) = 1,∀t ∈ R}
= {A ∈ gl(n) : tr(A) = 0}
= sl(n).

(c) The orthogonal group O(n): If G = O(n), then

Lie(G) = {A ∈ gl(n) : etA ∈ O(n), ∀t ∈ R}

= {A ∈ gl(n) : (etA
T

)(etA) = I}.

Now differentiating both sides of (etA
T

)(etA) = I with respect to t gives,

AT etA
T

etA + etA
T

AetA = 0,

which at t = 0 reduces to,
AT +A = 0.

Therefore, for G = O(n), Lie(G) = so(n).
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(d) The special orthogonal group SO(n). If G = SO(n), then, using the arguments for
(b) and (c) above,

Lie(G) = {A ∈ gl(n) : etA ∈ SO(n), ∀t ∈ R}
= {A ∈ gl(n) : A = −AT , tr(A) = 0}
= {A ∈ gl(n) : A = −AT } (A = −AT ⇒ tr(A) = 0)

= so(n).
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