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It is well-known that an analogue of the Lebesgue measure cannot be de-
fined in an infinite-dimensional separable normed linear spaces. Specifi-
cally, there exists no non-trivial translation invariant positive Borel mea-
sure on an infinite-dimensional separable normed linear space that as-
signs a finite measure to open balls. In this note, we provide a brief
proof of this fact.

Introduction

The non-existence of Lebesgue-like measures in infinite-dimensional
spaces is a well-known issue.2,3 In this note, we briefly study the non- 2 Y. Yamasaki. Measures on infinite dimen-

sional spaces, volume 5. World Scientific,
1985

3 B. R. Hunt, T. Sauer, and J. A. Yorke.
Prevalence: a translation-invariant “al-
most every” on infinite-dimensional
spaces. Bulletin of the American mathemat-
ical society, 27(2):217–238, 1992

existence of non-trivial translation invariant positive Borel measures
on an infinite-dimensional separable normed linear space that assign
finite measures to open balls. To make the discussion broadly acces-
sible, we recall some basics from analysis before discussing the main
result under study.

Preliminaries

Let (X, ‖·‖) be a normed linear space, with R or C as the base field.
In what follows B(x, r) denotes the open ball centered at x with ra-
dius r. Also, we denote by S1 the unit sphere centered at the origin.4 4 S1 = {x ∈ X : ‖x‖ = 1}.
Moreover, for a subspace M ⊆ X and a point p ∈ X, we define

dist(p, M) = inf
m∈M

‖p−m‖ .

The following result, known as Riesz’s Lemma, is well-known.5 5 E. Kreyszig. Introductory functional anal-
ysis with applications, volume 81. wiley
New York, 1989Lemma 1. (Riesz) Let (X, ‖·‖) be a normed linear space and suppose

M is a proper closed subspace of X. Then for any ν ∈ (0, 1) there exists
xν ∈ S1 such that ‖xν −m‖ ≥ ν for all m ∈ M.

Proof. Let p ∈ X \M and note that d := dist(p, M) > 0. Take m0 ∈ M
such that ‖p−m0‖ ≤ d/ν. Now, set xν = p−m0

‖p−m0‖
. Thus, ‖xν‖ = 1 and

for every m ∈ M, we have,

‖xν −m‖ =
∥∥∥∥ p−m0

‖p−m0‖
−m

∥∥∥∥
=

1
‖p−m0‖

∥∥p−
(
m0 + ‖p−m0‖m

)∥∥ ≥ d/(d/ν) = ν.



non-existence of lebesgue-like measures in infinite dimensions 2

The main result

The following technical result is a consequence of Riesz’s Lemma. The
result is stated for B(0, 1) but can be easily generalized for any open
ball. As seen shortly, this result shows why we cannot define an ana-
logue of the Lebesgue measure in an infinite-dimensional separable
normed linear space.6 6 A normed linear space is separable if it

contains a countable dense subset.
Lemma 2. Let X be an infinite dimensional normed linear space. For
every ε > 0, then there exists a countably infinite collection of disjoint
balls B(xn, ε).

Proof. Let y1 ∈ S1 and let M1 = span{y1}. By Riesz’s Lemma, we
know there exists y2 ∈ S1 such that ‖y2 −m‖ ≥ 1/2 for all m ∈ M1.
We let M2 = span{y1, y2} and proceeding inductively, get y3, y4, y5, . . .,
such that yn ∈ S1 for all n and for subspaces

Mn = span{y1, . . . , yn},

we have dist(yn+1, Mn) ≥ 1/2. Successive application of Riesz’s Lemma
is justified, because for all n, Mn is finite-dimensional and is thus
a proper closed subspace of X. For the sequence {yn}∞

n=1, we have
yn ∈ S1 and ‖yn+1 − yn‖ ≥ 1/2 for all n ∈ N; the latter also implies,
B(yn, 1/4) ∩ B(yn+1, 1/4) = ∅. Hence, the statement of the lemma
holds with the collection of balls given by {B(xn, ε)}∞

n=1, with xn = 1
2 yn

and ε = 1/8.

We refer to measures on (X,B(X)), where B(X) is the Borel sigma-
algebra on X, as Borel measures on X. For a Borel measure µ on X
to behave like the Lebesgue measure it must be a translation invari-
ant positive measure that assigns a finite measure to open balls. The
following result shows we cannot define such a measure on an infinite-
dimensional separable normed linear space.

Theorem 1. Let X be an infinite dimensional separable normed linear
space. Then there exists no non-trivial translation invariant positive
Borel measure µ on X that is finite on open balls.

Proof. Suppose µ is a translation invariant positive Borel measure that
assigns a finite measure to each open ball in X. By Lemma 2 we
know that B(0, 1) contains a countably infinite collection of disjoint
balls {B(xn, ε)}∞

1 . Then, by translation invariance, µ(B(xn, ε)) is the
same for every n ∈ N. That is, µ(B(xn, ε)) = α with α ∈ [0, ∞) a
constant. If α > 0, then µ(B(0, 1)) ≥ µ(∪nB(xn, ε)) = ∑n µ(B(xn, ε)) =

∑n α = ∞, which is a contradiction. Note that we also used the fact
that {B(xn, ε)}∞

1 are disjoint. On the other hand, if α = 0, then by
separability we can cover the whole space X with countably infinite
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family of open balls of radius ε and get that µ(X) = 0; i.e., µ is the
trivial (zero) measure.

Remark

The argument leading to the result on non-existence of an analogue
to the Lebesgue measure in infinite dimensions is related to the one
showing the Heine–Borel Theorem does not hold in infinite-dimensional
normed linear spaces. In particular, in the argument in the proof of
Lemma 2, we use Riesz’s Lemma to construct a sequence {yn}∞

n=1 ∈
B(0, 1), which satisfies ‖yn − ym‖ ≥ 1/2 for n 6= m. Clearly, this se-
quence cannot have any convergent subsequence and thus B(0, 1) is
not compact. It is interesting that while the result concerning the non-
compactness of the closed unit ball in infinite dimensional normed
linear spaces is usually seen early on in a first course in functional
analysis, the former result, regarding the non-existence of an analogue
of a Lebesgue measure in infinite dimensions is usually seen only in
advanced treatments of probability.

Acknowledgements I had originally stated Theorem 1 for infinite di-
mensional separable Banach spaces. I would like to thank Daniel
Littlewood for pointing out that the completeness assumption on the
normed linear space is not necessary. The result holds in any infinite-
dimensional separable normed linear space.
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