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Abstract Polynomial Chaos (PC) expansions are used
to propagate parametric uncertainties in an ocean gen-
eral circulation model. The computations focus on short-
time, high-resolution simulations of the Gulf of Mex-
ico (GOM), using the HYbrid Coordinate Ocean Model
(HYCOM), with wind stresses corresponding to hurri-
cane Ivan. A sparse quadrature approach is used to deter-
mine the PC coefficients which provides a detailed rep-
resentation of the stochastic model response. The qual-
ity of the PC representation is first examined through a
systematic refinement of the number of resolution levels.
The PC representation of the stochastic model response
is then utilized to compute distributions of quantities of
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interest (QoIs), and to analyze the local and global sensi-
tivity of these QoIs to uncertain parameters. Conclusions
are finally drawn regarding limitations of local perturba-
tions and variance-based assessment and concerning po-
tential application of the present methodology to inverse
problems and to uncertainty management.
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1 Introduction

Deterministic ocean models such as HYCOM [3,5,50],
ROMS [40,13] and MITgcm [27] have been instrumen-
tal in ocean weather forecast. Substantial efforts have
been made in the past few decades to improve those mod-
els for the purpose of achieving high-resolution, better
physical representation, and relatively fast and robust com-
putations. In this paper we extend the traditional deter-
ministic ocean modeling, namely HYCOM, by consid-
ering uncertainty in the model parameters. Our goal is
to provide a detailed statistical characterization of the
model variables in space and time, namely one that en-
ables us to conduct a global sensitivity analysis of the
impact of uncertain parameters. The quantification of the
uncertainties in the boundary conditions is another im-
portant aspect of this problem which is addressed in the
recent work [45].

We have been motivated to adopt a Polynomial Chaos
(PC) formalism, which appears to be ideally suited for
the present purpose. PC methods [12,23,25,48,38,49,
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24,7,22] have become increasingly popular in the past
two decades, and have have been extensively used to prop-
agate and quantify uncertainties in various physical prob-
lems, including fluid [23,25,30] and solid [12,11] me-
chanics, as well as chemical systems [38,24,31]. These
methods provide an approximation of the model vari-
ables in terms of a spectral expansion in an orthogonal
polynomial basis of an underlying probability space. Once
available, the PC expansion can be used to efficiently ap-
proximate the statistical properties of the model variables
such as their distribution, moments, sensitivities, etc.

There are two major approaches for computing the
coefficients in a PC expansion: 1) the intrusive method
and 2) the non-intrusive methods. The intrusive method
requires a reformulation of the original random dynami-
cal system (and hence the deterministic solvers), through
Galerkin projection onto the PC basis [12,22]. Subse-
quently, one has to solve a larger system for the time/space
evolution of the PC coefficients. Non-intrusive methods,
on the other hand, provide a means to determine the req-
uisite spectral representation through direct application
of existing deterministic solvers.

There are different types of non-intrusive methods,
including the non-intrusive spectral projection (NISP),
the collocation method (CM), and the regression-like ap-
proaches. In the NISP method, PC coefficients are com-
puted through an L2-projection of variables onto a PC ba-
sis [22]. On the other hand, in the CM method one com-
putes the PC coefficients by using the PC basis as a set
of interpolants [35,28,47,1]. Finally, the regression-like
approaches find the PC coefficients by minimizing the
distance between the PC expansion and a set of observa-
tions [2].

In this paper, we will follow a NISP approach to com-
pute the coefficients in a PC expansion. Non-intrusive
PC methods in general, and NISP in particular, suffer
from the so-called curse of dimensionality. In the NISP
method, this phenomenon is seen through the rapid in-
crease of the number of deterministic realizations needed
for computations of the PC coefficients as the order of
expansion and the number of stochastic dimensions in-
crease. To tackle this issue, a sparse quadrature techniques
will be explored, and the quality of the representation
will be monitored as the sparse grid is successively re-
fined.

We restrict our attention on the impact of parametric
uncertainties in HYCOM, specifically those appearing in
parameterizations of subgrid mixing and wind drag. Un-
certainties are propagated through short-time high-resolution
simulations in the Gulf of Mexico, with wind stresses
corresponding to hurricane Ivan. We exploit spectral rep-
resentations to conduct a systematic assessment of the

effect of uncertainties on quantities of interest, including
global and local sensitivities with respect to the uncertain
input parameters. Both local field variables as well as in-
tegral measures are considered in the analysis. In addi-
tion to quantifying global and local sensitivities, we de-
velop a simplified measure transform technique that en-
ables us to efficiently assess the impact of restricting the
range of selected input parameters, and thus demonstrate
the potential of PC representations in managing uncer-
tainties in ocean models.

The structure of this paper is as follows. Section 2
provides a brief discussion of HYCOM initialization, forc-
ing and wind drag parameterization. In section 3, we in-
troduce essential notation and review relevant PC con-
cepts, formulate the stochastic problem, outline the sparse
grid NISP approach, and briefly examine the effect of
sparse grid refinement. In section 4, we utilize the PC
representation to gain insight into the the stochastic re-
sponse of field variables to uncertain model inputs. In
section 5, we provide global and local analysis of sensi-
tivities in field variables, and also illustrate the imple-
mentation of measure transform computations. In sec-
tion 6, we investigate statistical properties of integral QoIs,
namely the regionally-averaged sea surface temperature
and the average heat flux in a circular area around the
eye of the hurricane. Finally, in section 7, we provide
concluding remarks, and discuss the possible extension
of the present methodology.

2 HYCOM in the Gulf of Mexico

Our study focuses on quantifying ocean model uncertain-
ties associated with mixed layer and air-sea momentum
exchange parameterizations, when the ocean is forced by
hurricane-strength winds. The wind-stress and the mixed
layer parameterization modulate the ocean Sea Surface
Temperature (SST) response to the hurricane forcing, a
key parameter in determining the exchanges of energy
and momentum between the ocean and atmosphere, and
in impacting hurricane intensity forecast.

The setting chosen for our experiments is the circu-
lation in the Gulf of Mexico during the passage of hurri-
cane Ivan from Sep 9-16, 2004. Ivan’s track is shown in
figure 1. Several “classical” ocean model sensitivity stud-
ies have already been carried out (e.g. [37,50,15]); here
we focus on using PC expansions to systematically char-
acterize the entire response surface of the ocean model
to parametric uncertainties in its subgrid parameteriza-
tions. Below, we briefly describe the “baseline” setup,
and specify the random inputs used in the analysis.
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Fig. 1 Hurricane Ivan entered the Carribean on Sep 9 as a category
5 with winds of 160 m.p.h.; its intensity decreased to a category 4
upon crossing the Yucatan Strait on Sep 14; it made landfall as a
category 3, with sustained winds of near 120 m.p.h., on Sep 16 just
west of Gulf Shores, Alabama.

2.1 HYCOM

The model used is HYCOM, a free-surface general cir-
culation ocean model that solves the hydrostatic Navier-
Stokes equations. These include equations for horizontal
momentum and mass conservation in addition to scalar
transport equations for temperature and salinity. HYCOM
relies on a hybrid vertical coordinate system to discretize
the partial differential equations [3]. This system is de-
signed to be quasi-optimal throughout the various flow
regimes encountered in the ocean: isopycnic in the open
stratified ocean to minimize spurious diapycnal mixing,
terrain-following in coastal regions to faithfully represent
flow-topography interactions, and z-coordinate near the
surface to resolve mixed layer processes. A major advan-
tage of this system is the ability to use advanced sub-
grid scale parameterizations for the ocean mixed layer
while retaining the advantages of an isopycnal model in
the ocean interior. For additional detail concerning the
model, see e.g. [3,4,5,14].

Our Gulf of Mexico nested HYCOM configuration
is very similar to the one adopted in [37,50,15]. The
computational domain encompasses the Gulf of Mexico
and portions of the Caribbean Sea; its grid resolution is
1
25
◦

(≈4 km) in the horizontal and 20 layers are used
to discretize the vertical. The initial and boundary con-
ditions are taken from a data-assimilative 1/12◦ global
HYCOM simulation so that major oceanic features, such
as the Loop Current and its associated warm and cold
core eddies, are positioned at their correct locations dur-
ing Ivan’s transit. Atmospheric forcing fields are taken
from the Coupled Ocean/Atmosphere Mesoscale Predic-

tion System (COAMPS) [16] at 27-km/3-hourly resolu-
tion; we note that the spatial coverage is too coarse to
resolve all features of interest, but should be adequate for
our purposes. All the simulations performed herein cov-
ered the time window Sep 9-16, 2004, and model outputs
were recorded at three hour time intervals.

2.2 Mixed Layer Uncertainties

The subgrid scale parameterization adopted in the cur-
rent experiments for the ocean mixed layer is K-Profile
Parameterization (KPP) [20], a widely used vertical mix-
ing scheme. KPP predicts an ocean boundary layer depth
within which turbulent mixing is parameterized using a
nonlocal bulk Richardson number, defined relative to the
surface, and the similarity theory of turbulence. This bound-
ary layer depth is determined by the depth at which the
bulk Richardson number reaches a critical Value, Ric.
Below the boundary layer, the vertical mixing is param-
eterized through the local gradient Richardson number
and a background mixing. Here we follow [26] in per-
turbing three KPP’s parameters: the critical Richardson
number, and the background viscosity and diffusivity; a
combination of 0.3, 10−4m2/s, and 10−5m2/s for these
parameters proved adequate in reproducing climatologi-
cal observations of the zonal amplitude of equatorial cur-
rents. The range of background diffusion explored herein,
10−5–10−4, spans the entire range of (low) observed back-
ground diffusion to the (high) amount deemed necessary
to maintain the observed oceanic stratification [29].

2.3 Wind Drag Parametric Uncertainties

Momentum exchange between the ocean and atmosphere
is effected through the wind-stresses at their interface,
and the latter play a key role in ocean mixed layer dy-
namics and in determining the sea surface temperature
(SST). The wind-stresses are commonly computed from
a drag law of the form τ = ρ Cd ‖V‖ V where Cd is
the drag coefficient, ρ the air density, and V is the dif-
ference between air velocity at 10m and ocean current
velocity (the latter is usually neglected since air speed is
much larger than current speed). The drag coefficient, in
turn, is inferred from bulk parameterization formulas that
depend on a number of atmospheric variables. Here we
have used a fit due to Kara [19] to estimate the drag co-
efficient given the air speed at 10 m height, V , and the
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air-sea temperature difference, δT :

Va = max(2.5,min(32.5,V )) (1)

C0
d = a0 +a1Va +a2V 2

a (2)

C1
d = b0 +b1Va +b2V 2

a (3)

Cd = C0
d +C1

dδT (4)

where ai, bi are coefficients determined from a least square
fit to COARE v2.5. C1

d is usually small and decreases to
zero with air speed V ; hence air-sea temperature differ-
ence are not important in hurricane conditions. We rep-
resent the uncertainties in Cd with a multiplicative factor
in the interval [0.2,1], a range that fits within the uncer-
tainties in observational and experiment data as shown in
figure 2.
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Fig. 2 Observations and parameterizations of wind-drag coeffi-
cient Cd . The green lines show our stochastic parameterization of
Cd which is seen to fall within the envelope of various observa-
tions/fits at high-wind speeds. The blue lines and circles are the the
aircraft observation of [9], the three-red lines are fitted curves to
the laboratory experiments of [8], the black lines are the dropson-
des observation of [36]. The dashed line refers to [21] parameter-
ization that does not take into account Cd’s saturation at high V .
The unperturbed HYCOM parameterization of Cd , due to [19] for
δT = 0, is shown in magenta.

3 The Polynomial Chaos framework

We begin this section by fixing the notation used through-
out the paper and collecting the background results needed
in what follows. We denote by (Ω ,F ,µ) a probability
space, where Ω is the sample space, F is an appro-
priate σ -algebra on Ω , and µ is a probability measure.
For a random variable ξ on Ω , we write ξ ∼U (a,b) to
mean that ξ is uniformly distributed on the interval [a,b].
We use the term iid for a collection of random variables

to mean that they are independent and identically dis-
tributed. The distribution function [18,46] of a random
variable ξ on Ω is given by Fξ (x) = µ(ξ ≤ x) for x ∈ R.

3.1 Polynomial Chaos

In the present work, we consider models with finitely
many uncertain parameters. We parameterize these un-
certain parameters by a finite collection of real-valued
iid random variables ξ1, . . . ,ξd on Ω . We refer to d, the
number of random parameters, as the dimension of the
stochastic problem. Let Fξ denote the joint distribution
function of the random vector ξ = (ξ1, . . . ,ξd)T . Since
the ξ j are iid, Fξ (x) = ∏

d
j=1 F(x j) for x ∈Rd , where F is

the common distribution function for ξ1, . . . ,ξd .
For computational purposes, it is convenient to work

in the image probability space (Ω ∗,B(Ω ∗),Fξ ), where
Ω ∗ ⊆ Rd is the image of Ω under ξ , and B(Ω ∗) is the
Borel σ -algebra on Ω ∗. We denote the expectation of a
random variable X : Ω ∗→ R by

〈X〉=
∫

Ω∗
X(s)dFξ (s).

The space of square integrable random variables on Ω ∗,
L2(Ω ∗), is endowed with the inner product:

(X ,Y ) =
∫

Ω∗
X(s)Y (s)dFξ (s) = 〈XY 〉 ,

and the norm of X is given by ‖X‖L2(Ω∗) = (X ,X)1/2 =〈
X2
〉1/2.
In the present work, we will be dealing with uncer-

tain inputs ranging on finite intervals. Therefore, we will
parametrize these inputs with canonical random variables
ξi

iid∼ U (−1,1). Consequently, we will rely on the basis
formed by the d-variate Legendre polynomials {Ψk}∞

0 .
EachΨk is obtained through a product of one-dimensional
Legendre polynomials according to:

Ψk(ξ ) =
d

∏
i=1

ψ
αk

i
(ξi), ξ ∈Ω

∗, (5)

where αk = (αk
1 ,αk

2 , . . . ,αk
d) is a multi-index, with αk

i
being the order of the one-dimensional Legendre poly-
nomial, ψ , in ξi. With this basis, any X ∈ L2(Ω ∗) admits
an expansion of the form:

X =
∞

∑
k=0

ckΨk, (6)

known as a generalized Polynomial Chaos [48] expan-
sion of X . The multi-index construction appearing in (5)
will be also exploited in the computation of the Sobol
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(global) sensitivity indices, as discussed in section 5.1
below.

In computations, we approximate X(ξ ) with a trun-
cated series,

X(ξ ) .=
P

∑
k=0

ckΨk(ξ ), (7)

where P is finite and depends on the truncation strategy
adopted. In the present work, we consider truncations
based on the total degree of the polynomials in the se-
ries. In this case, P depends of the stochastic dimension
d and expansion “order”, p, according to

P =
(d + p)!

d!p!
−1, (8)

where p is the largest polynomial degree in the expan-
sion.

With X expanded as in (7), using the orthogonality of
the basis {Ψk}P

0 and the convention that Ψ0 ≡ 1, we have
immediate access to the moments

〈X〉= c0,〈
X2〉=

P

∑
k=0

c2
k
〈
Ψ

2
k
〉
.

Moreover, we have

Var(X) = 〈X2〉−〈X〉2 =
P

∑
k=1

c2
k
〈
Ψ

2
k
〉
,

and the covariance of the two random variables, X =
∑

P
k=0 xkΨk and Y = ∑

P
k=0 ykΨk, is given by,

cov(X ,Y ) =
P

∑
k=1

xkyk
〈
Ψ

2
k
〉
.

3.2 Non Intrusive Spectral Projection

Let X belong to L2(Ω ∗). As mentioned in the introduc-
tion, non-intrusive methods aim at computing the PC co-
efficients in the finite expansion (7) via a set of determin-
istic evaluations of X(ξ ) for specific realizations of ξ .
Observe that since {Ψk}P

0 form an orthogonal system we
have:

(X ,Ψk) =

(
P

∑
l=0

clΨl ,Ψk

)
=

P

∑
l=0

cl (Ψl ,Ψk) = ck (Ψk,Ψk) ,

(9)

so that the coefficient ck is given by

ck =
〈XΨk〉〈

Ψ 2
k

〉 . (10)

The moments
〈
Ψ 2

k

〉
of the multivariate Legendre poly-

nomials in (10) can be computed analytically [22], and
hence the determination of coefficients ck amounts to the
evaluation of the moments 〈XΨk〉. We note that

〈XΨk〉=
∫

Ω∗
X(s)Ψk(s)dFξ (s), k = 0, . . . ,P,

leading to the evaluation of a set of P + 1 integrals over
Ω ∗ ⊆ Rd . In the NISP approach, these integrals are dis-
cretized as finite sums of the form

∫
Ω∗

X(s)Ψk(s)dFξ (s) .=
Nq

∑
j=1

w jX(ξ j)Ψk(ξ j), (11)

where ξ j ∈ Ω ∗ and w j are the nodes and weights of an
appropriate quadrature formula. Note that the same set
of nodes is used to compute all the coefficients ck, so the
complexity of NISP scales with Nq, the number of nodes
where one has to compute X . Therefore, the challenge
is to design quadrature formulas yielding the lowest in-
tegration error for the minimal number of nodes. In gen-
eral, this is a difficult problem, and one often proceeds by
tensorization of one-dimensional quadrature rules. Con-
sidering a 1-D quadrature rule with n nodes, its full ten-
sorization gives a d-variate formula having Nq = nd nodes,
showing that this approach is limited to low d. This expo-
nential scaling with d is often referred to as the curse of
dimensionality. An effective way of mitigating the curse
of dimensionality is through the use of sparse tensoriza-
tions of sequences of 1-D formulas using Smolyak’s for-
mula [41], leading to sparse quadrature techniques [10,
32,33]. This is the approach adopted in this paper. Irre-
spective of the integration formula considered, the set of
integration nodes comprise what we call the NISP sam-
ple; we denote it by

S = {ξ j}Nq
j=1 ⊂Ω

∗.

Thus, to evaluate (11) we need to compute X(ξ q) for all
ξ q ∈S . Let Π ∈ R(P+1)×Nq be the matrix given by

Πk, j =
w jΨk(ξ j)〈

Ψ 2
k

〉 , k = 0, . . . ,P, j = 1, . . . ,Nq.

We call Π the NISP projection matrix. If we denote by ζ

the vector with coordinates ζ j = X(ξ j), then the vector
c = (c0, . . . ,ck) of the spectral coefficients in (10) is given
by c = Πζ , or in components,

ck =
Nq

∑
j=1

Πk jζ j =
Nq

∑
j=1

Πk jX(ξ j), k = 0, . . . ,P.
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3.3 HYCOM uncertainties recast as stochastic variables

Let us denote by p = (p1, p2, p3, p4)T the vector of ran-
dom model inputs. Following the discussion in section 2,
we model these using uniform random variables, as spec-
ified in Table 1.

Parameter Description Distribution
p1 critical Richardson number U (0.25,0.7)
p2 background viscosity (m2/s) U (10−4,10−3)
p3 background diffusivity (m2/s) U (10−5,10−4)
p4 stochastic wind drag coefficient U (0.2,1.0)

Table 1 The random input parameters for HYCOM.

Specifically, the inputs pi are parameterized by ξi ∼
U (−1,1), i = 1, . . .4, through

pi(ξ ) = µi +σiξi, i = 1, . . . ,4,

where ξ = (ξ1,ξ2,ξ3,ξ4)T ,

µi =
1
2
(ai +bi), and σi =

1
2
(bi−ai),

so that pi ∼U (ai,bi) as in Table 1.
Let G denote the physical domain, which in our case

is the Gulf of Mexico (see figure 1). At a given time t
and a point x ∈ G , and a given vector of random inputs
p(ξ ), we denote the model output by the random vector
X(t,x,ξ ), which is given by

X(t,x,ξ ) = H(t,x; p(ξ )),

where H(t,x; p(ξ )) signifies the result of a deterministic
HYCOM solve at time t and point x with input param-
eters p(ξ ). Presently, we are mostly interested in SST,
mixed layer depth (MLD), and to lesser extent sea sur-
face height (SSH); X may thus correspond to any of these
QoIs.

Quadrature level Number of nodes
1 9
2 33
3 81
4 193
5 385

Table 2 Number of quadrature nodes versus Smolyak quadrature
level. The Gauss-Kronrod-Patterson quadrature is used as the un-
derlying rule.
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Fig. 3 Evolution of SST (top) and MLD (bottom) at the buoy lo-
cation. The curves depict the 385 realizations corresponding to a
level 5 Smolyak quadrature. The first vertical line shows the time
when the hurricane enters the Gulf of Mexico, whereas the second
vertical line corresponds to a time when the center of the hurricane
is close to the buoy.

3.4 Smolyak quadrature on random parameter space

As noted in Section 3.2, the NISP method proceeds by
computing the PC coefficients via numerical integration
as in (11). To mitigate the computational cost of numer-
ical integration, we rely on a Smolyak quadrature [41,
10,32,33,34], which is based on nested sparse grids. In-
creasing the resolution level leads to finer grids result-
ing in higher degrees of precision for the quadrature; for
details see [41,10,32,33,34]. In particular, a detailed ac-
count is provided in [10] on how to determine the Smolyak
sparse grid (the set of integration nodes) and the cor-
responding weights. In our computations, we relied on
SMOLPACK [32,33,34], with Gauss-Kronrod-Patterson
as the basic 1D quadrature rule. For the present four-
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Fig. 4 Distribution of SST at the buoy location at selected times, as indicated. Different scales are used in each panel to facilitate comparison
of the different curves. p denotes the highest polynomial degree in the truncated expansion. In each case, the PC expansion was sampled
106 times to generate the distribution curve.

dimensional case, we report in Table 2 the number of
quadratures nodes associated with levels 1,2, . . . ,5.

With the current truncation strategy used and the cur-
rent sparse quadrature, one observes that the expansion
coefficients of any function U ∈ span{Ψk}P

0 can be re-
covered exactly if the order, p, of the expansion is less
or equal to the level of the quadrature. Thus, to inte-
grate exactly a polynomial of order 5, 385 quadrature
nodes would be required (Table 2). In contrast, using
a fully tensorized Gauss-Legendre quadrature would re-
quire 6 nodes in each of the four stochastic dimensions
and hence a total of 64 = 1296 nodes for the same degree
of precision. This illustrates the savings afforded by the
sparse quadrature.

3.5 PC representation of the model variables

In the computations, we used NISP with a level 5 Smolyak
quadrature to compute the spectral expansion of the model
output in the PC basis. In figure 3 we plot the time evo-
lution of SST and MLD at 85.1 W / 26.1N. This cor-

responds to the location of buoy 42003 in the Gulf of
Mexico, where observational data is available. To ascer-
tain that a reasonable representation is achieved with a
level 5 quadrature, we have examined the convergence
of the PC representation as the number of levels was in-
creased. This was facilitated by the nested nature of the
sparse grids, which naturally minimized the number of
realizations required. A brief highlight of this analysis is
provided below.

Figure 4 shows instantaneous distributions of SST at
the buoy location. These are obtained by sampling the PC
expansion at selected times. The distributions are gener-
ated using first, second, third, fourth, and fifth order PC
expansions computed using NISP with a level five sparse
grid. Note that for the p = 1 case, we have a linear com-
bination of iid uniform random variables plus the mean.
As seen in the plots, the distributions seem to level off as
the PC order is increased to p = 5 suggesting that a fifth
order expansion is sufficient.

To get further confidence in the spectral represen-
tations, approximate relative L2 errors were computed.
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With X in L2(Ω ∗), the relative L2 error between X and
its (truncated) PC representation is given by,

∥∥X−∑
P
k=0 XkΨk

∥∥
L2(Ω∗)

‖X‖L2(Ω∗)
=

(∫
Ω∗

∣∣X− P

∑
k=0

XkΨk
∣∣2 dFξ

)1/2

(∫
Ω∗

∣∣X∣∣2 dFξ

)1/2 ,

which can be approximated through Monte Carlo inte-
gration. Such sampling, however, is prohibitively demand-
ing. Instead, we approximate this relative error by:

E =

(
∑

ξ∈S

∣∣X(ξ )−
P

∑
k=0

XkΨk(ξ )
∣∣2)1/2

(
∑

ξ∈S

∣∣X(ξ )
∣∣2)1/2 ,

where S ⊆Ω ∗ is the NISP sample set. Note that E is the
relative `2 error on the NISP sample set.

Figure 5 shows the evolution of E, computed for SST
and MLD at the buoy location. The NISP sample corre-
sponding to a level 5 quadrature |S |= 385 was used for
this purpose. The results indicate that E is largest in the
case of MLD, which still falls below about 5% through-
out the computation. Thus, the PC expansion coincides
reasonably well the underlying realization data.

4 Basic illustrations

The realizations illustrated in the previous section indi-
cate that the stochastic model response to uncertain data
can generally be quite complex, even on relatively short
time scales. This can be appreciated from the evolution
of SST and MLD at the buoy location, which reveal the
occurrence of distinct bands. In this section, we briefly il-
lustrate how the PC representations can be used to quan-
tify the uncertainty in the response of QoIs. We first focus
on the local behavior of SST and MLD at the buoy loca-
tion, and provide basic illustration of the computation of
low-order moments of the solution. We then provide ex-
amples, illustrating the use of the PC representations in
estimating the probability of a QoI being in a given inter-
val.

Figure 6 shows the evolution of the mean SST and
MLD at the buoy location. To quantify the impact of un-
certainty in the model inputs, curves indicating two stan-
dard deviation bounds are also depicted. The results in-
dicate that the standard deviation generally increases as
time evolves, though its evolution is evidently non mono-
tonic. Its behavior, however, is consistent with the spread
of the individual realizations reported in Figure 3.
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Fig. 5 Evolution of E for SST (top) and MLD (bottom).

Of course, direct comparison of the local predictions
obtained by OGCMs to local field observations is gen-
erally not appropriate. This is the case because, even in
the absence of any model and numerical errors, OGCM
predictions are inherently filtered, whereas field observa-
tions would reflect spatial and temporal fluctuations that
cannot be captured by the model. Notwithstanding these
limitations, in Figure 7 we compare the field observations
of SST at the location of buoy 42003, to the correspond-
ing stochastic model predictions. Plotted in Figure 7 are
the evolution of the mean SST, as well as curves de-
picting two standard deviation bounds. Superficial com-
parison of the results would appear to indicate that the
field observation generally fall within the predicted un-
certainty band, though local excursions can be observed,
especially at small times. However, one should caution
against making such an assessment, namely because the
stochastic model response is evidently complex, and the
distribution functions are highly non-Gaussian. (This is
illustrated in Figure 8, which shows the distribution of
SST at selected time instants.) Clearly, in these situa-
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Fig. 6 Mean and variances of the model quantities at the buoy lo-
cation for SST (top) and MLD (bottom). The first vertical line in-
dicates the time the hurricane enters the Gulf whereas the second
line indicates a time at which the hurricane is close to the buoy.

tions, it is generally not appropriate to characterize the
uncertainty in QoIs in terms of means and variances only.
This is clearly the case in the present setting, as none
of the individual model realizations depicted in Figure 3
appears to provide a very good match with the observa-
tional data. Specifically, the model simulations do not re-
produce the quick cooling and heating recorded in the
observation around hour 160. This could be due to the lo-
cal nature of the buoy measurements whereas the ocean
model cannot resolve features below 3 km (this moti-
vates us to look for global QoIs for model-data inter-
comparisons). Furthermore, the COAMPS winds used as
forcing are coarse spatially (27 km) whereas Ivan’s ra-
dius of maximum winds is only about 45 km. It is thus
likely that COAMPS smears the real winds by decreasing
their amplitude and broadening their spatial extent. This
explanation is consistent with the early cooling trend seen
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Fig. 7 Comparing stochastic mean µ with two standard deviation
bounds with observed SST data. The first vertical line indicates the
time Ivan enters the Gulf and the second one indicates the time the
hurricane is closest to the buoy.

in the HYCOM realizations and with the absence of quick
heating following the storm’s passage.

One of the advantages of PC representations is that
they can be sampled efficiently. This was exploited ear-
lier in the generation of probability density functions, ob-
tained through extensive sampling of the polynomial ba-
sis. We conclude this section by providing an additional
example, namely concerning evaluation of expressions of
the form:

Prob{X > β} .

Such estimates are typically obtained through Monte Carlo
(MC) sampling. Specifically, one chooses a sample S ⊂
Ω ∗ and uses

Prob{X > β} ≈ #
({ξ ∈ S | X(ξ ) > β})

#(S)
, (12)

where #(S) denotes the number of elements of the set S.
The approximation improves as the sample size #(S)→
∞. Of course, the sampling becomes prohibitively costly
if the realization appearing in (12) were to rely on in-
dependent model evaluations, especially when individ-
ual model evaluations are quite involved as is the case in
ocean computations. Alternatively, by sampling the PC
representation of X , such estimates can be obtained at
a minute fraction of direct MC sampling. A sample of
such computations is shown in Figure 9, which depicts
instantaneous contours of the probability that MLD ex-
ceeds 22 m and the probability that SST is cooler than
28 C. In both cases, 104 samples are drawn from the PC
representation of these QoIs.
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Fig. 8 Distribution of SST at the buoy location at different times,
as indicated. Note that as the hurricane traverses the Gulf a cool-
ing trend can be observed, reflected by the shift of the distribution
function to the left. Also, note the emergence of long tails for the
distributions stretching toward cooler temperatures.

5 Stochastic sensitivity analysis

PC representations enable the analysis of model output
sensitivities with modest computational cost. This includes
both global sensitivity analysis, particularly using Sobol

Fig. 9 Probability contours at t = 150. Top:
Prob{MLD > 22 (meters)}; bottom: Prob{SST < 28 (◦C)}.
The contours are generated at t = 150 hours. In both cases, 104

samples are drawn from the corresponding PC representations.
The bottom plot highlights the cool fronts approaching the coast as
the hurricane nears landfall.

indices [42,17,43,22,6,44], and local sensitivity analy-
sis by differentiating the PC expansion [39]. Global sen-
sitivity analysis aims to quantify the contribution of dif-
ferent random input parameters to the model variabil-
ity, whereas local sensitivity analysis aims at quantify-
ing the response of the model to local changes around a
particular realization. In this section, we briefly outline
the mathematical setup of the global and local sensitivity
analyses we use in the remainder of the present study.

5.1 Global sensitivity analysis via Sobol indices

The variance-based, global sensitivity analysis conducted
in this section is inspired by the ANOVA (or Sobol) de-
composition of square integrable functions of several vari-
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ables [42,17,43]. As described in [22,6,44], PC repre-
sentations of random variables enable efficient approxi-
mation of the corresponding variance-based, global sen-
sitivity indices. Below, we briefly describe the computa-
tion of the so-called total sensitivity indices of random
variables from their PC representations.

Suppose U is a square integrable random variable
with PC representation given by

U(ξ ) =
P

∑
k=0

UkΨk(ξ ), ξ ∈ [−1,1]d ,

where d denotes the stochastic dimension. We denote by
αk the multi-index associated with kth term in the PC ex-
pansion [22]. For each index set u⊆{1, . . . ,d}, we define

Ku =

{
k ∈ {1, . . . ,P} :

{
αk

i > 0, if i ∈ u,

αk
i = 0, if i /∈ u

}
.

Note that Ku picks multi-indices that have non-zero en-
tries at the indices specified by u = (i1, . . . , is), and zero
entries everywhere else. Then, the Sobol sensitivity in-
dices [22,6,44] for u are given by,

Su =
∑

k∈Ku

U2
k
〈
Ψ

2
k
〉

P

∑
k=1

U2
k
〈
Ψ

2
k
〉 , u⊆ {1, . . . ,d}.

To get the total sensitivity corresponding to the ith input
ξi we compute the total index [22,6,44]:

Ti = ∑
u3i

Su =
∑
u3i

∑
k∈Ku

U2
k
〈
Ψ

2
k
〉

P

∑
k=1

U2
k
〈
Ψ

2
k
〉 . (13)

The above formula can be simplified as follows. Let Ii
be the index set given by

Ii = {k ∈ {1, . . . ,P} : α
k
i > 0},

which picks all modes with an input from ξi. Note that
Ii =

⋃
u3i

Ku for i = 1, . . . ,n. Therefore,

Ti =
∑

k∈Ii

U2
k
〈
Ψ

2
k
〉

P

∑
k=1

U2
k
〈
Ψ

2
k
〉 . (14)

Using (14), the computation of Ti is straightforward. Note
that the total sensitivity index Ti measures the contribu-
tion of the ith random input to total model variability by
computing the fraction of the total variance due to all the
terms in the PC expansion which involve ξi.

It is also worth noting that for random variables ex-
panded in a PC basis, all the index sets above are dictated
by the basis alone. Thus, we need to find the index sets
Ku for computation of Su and Ii for computation of Ti
only once. Hence, the computation of Su or Ti for a ran-
dom variable is immediate once its PC coefficients are
determined.

5.1.1 Global sensitivity analysis

Using the total sensitivity indices introduced in section 5.1
we can assess the contribution of each of the random in-
puts, parameterized by ξ1, . . . ,ξ4, to the model variabil-
ity. For clarity, we recall the significance of the sensitivity
indices T1, . . . ,T4 in Table 3.

Index Significance
T1 sensitivity due to critical Richardson number
T2 sensitivity due to background viscosity
T3 sensitivity due to background diffusivity
T4 sensitivity due to wind drag coefficient

Table 3 Physical meaning of ocean model sensitivity indices.

Figure 10 depicts the global sensitivity indices Ti,
i = 1, . . .4 for SSH, SST, and MLD. The results were
computed using the PC expansions of model variables at
the location of the buoy 42003. A basic observation from
these results is that as time evolves T4 becomes clearly
dominant. This appears to coincide with the emergence
of distinct bands in the model realizations, seen in Fig-
ure 3. For the SST and MLD, the impact of background
diffusivity is dominant in the initial stages, but uncer-
tainty in wind drag coefficient clearly prevails as the hur-
ricane enters the GOM and approaches the buoy location.
In the case of sensitivities for SSH, we note that T4 begin
to dominate the other sensitivity indices much earlier in
time. Specifically, for times larger than 50 hours, ξ1, ξ2,
and ξ3 contribute very little to the total variance in SSH.
Below, we explore how measure transforms can be used
to quantify the range of wind drag uncertainty in which
these trends remain valid. These transforms are also use-
ful to re-assess the output uncertainty when the input un-
certainty range is restricted without incurring additional
model realizations. For example, one can explore a range
for the drag coefficient that is wider than physically pos-
sible, and then restrict its range a posteriori for more re-
alistic assessments of output uncertainties and variance
analyses.
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Fig. 10 Evolution of the global sensitivity indices T1, . . . ,T4 for
SSH (top), SST (middle), and MLD (bottom). The first vertical line
indicates the time the hurricane enters the GOM whereas the sec-
ond indicates a time at which the hurricane is close to the buoy.

5.1.2 Restriction of the wind drag coefficient

We saw in the previous subsection that the stochastic
wind drag coefficient, p4, parameterized by ξ4, ultimately
dominates the variance of the selected QoIs. Here we ad-

dress the question of how much would one need to re-
strict the range of p4 so that its sensitivity is no longer
dominant. We focus our attention to reducing the range
of p4 around its mean value, namely according to

pα
4 (ξ ) =

1
2
(a4 +b4)+

1
2α

(b4−a4)ξ4,

where α > 1 is a restriction factor. Table 4 shows how
increasingly narrower intervals p4 are generated by in-
creasing α .

α Wind drag coefficient range
1.00 [0.20,1.00]
1.50 [0.33,0.87]
2.00 [0.40,0.80]
2.50 [0.44,0.76]
3.00 [0.47,0.73]
3.50 [0.49,0.71]
4.00 [0.50,0.70]

Table 4 Successively smaller intervals for the wind drag coeffi-
cient.

To determine sensitivities corresponding to restricted
range, we exploit the existing PC representation as a sur-
rogate for the actual random fields, and thus avoid the
need to generate new realizations. A simple means of
achieving this is by relating a generic output associated
with the scaled parameter range, Yt , to the corresponding
value associated with the original interval, Xt , using the
transform:

Yt(ξ1,ξ2,ξ3,ξ4) = Xt(ξ1,ξ2,ξ3,ξ4/α)

=
P

∑
k=0

Xk
t Ψk(ξ1,ξ2,ξ3,ξ4/α).

Yt can then be projected into the PC basis to obtain a new
set of PC coefficients.

Figure 11 shows the dependence of T1, . . . ,T4 for in-
creasing values of α . Plotted are curves depicting the
global sensitivities of SSH, SST, and MLD at t = 135 hrs,
a time at which ξ4 has become dominant. The results
readily yield quantitative predictions, for each of these
QoIs, of how much ξ4 must be restricted for its global
sensitivity index to cease dominating the others. In par-
ticular, it is interesting to note that a restriction factor
α ' 4 is needed to achieve this effect for SSH, whereas
significantly smaller values would be needed for SST and
MLD. Also note that, as α increases, the uncertainty in
SSH becomes dominated by ξ2, whereas for SST and
MLD the dominant parameter is ξ3. This may only hold,
however, at this particular time instant. To illustrate the
time-dependent behavior of the sensitivity indices, we
plot in Figure 12 the evolution of T1, . . . ,T4 for a single
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Fig. 11 The decline of model sensitivity to ξ4 as the interval of
wind drag coefficients shrinks (i.e. ξ4 approaches zero). The indices
Ti are as in Table 3.

restriction factor, α = 3. In this case, one observes that
all random inputs eventually become significant contrib-
utors to the total variance of SSH, whereas the variability
of SST and MLD becomes dominated by the background
diffusivity.

The present exercise further illustrates the utility of
the PC representations of the model outputs. In general,
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Fig. 12 Model sensitivities over time. Interval for the stochastic
wind drag coefficient (parameterize by ξ4) is shrunk with a factor
of 1/3 (i.e. α = 3). The indices Ti are as in Table 3.

input uncertainties may not be known exactly, so it may
be prudent to consider wide parameter ranges, and then
restrict these ranges as data and observations become avail-
able. Based on the corresponding PC representations, one
can efficiently determine whether slight changes in pa-
rameter ranges, e.g. removing certain extreme parame-
ter values, would have a material impact on the balance
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of model sensitivities. Alternatively, as illustrated above,
one can assess under what ranges of uncertainty a spe-
cific parameter ceases to play a dominant role in the model
variability. The present experiences also highlight the ad-
vantages of the global sensitivity analysis over the local
sensitivity approach. Specifically, whereas large sensitiv-
ities may prevail in a given parameter range or in the
neighborhood of a given selected parameter vector, these
sensitivities may also drop rapidly as the parameter range
is refined or as one moves away from the selected param-
eter vector. The ability to detect and quantify these situa-
tions without the need to generate additional model runs
is one of the advantages of applying change of measure
techniques to PC representations of model outputs.
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Fig. 13 T3 sensitivity contours for SST. Plots are generated for t =
90 hrs (top) and t = 147 hrs (bottom).

5.1.3 Sensitivity regions

In subsection 5.1.1, we provided a global sensitivity anal-
ysis at the buoy location. Here, we illustrate the spatial

distribution of these global indices for the whole com-
putational domain to provide additional insight into their
impact on the predictions.

We have previously noted the interplay between ξ3
and ξ4 on the global sensitivity of SST. For brevity, we
focus our attention on the spatial distribution of the cor-
responding indices.

Figures 13 and 14 respectively depict spatial con-
tours of T3 and T4; in both cases, plots are generated for
t = 90 hrs and t = 147 hrs. One observes from Figure 13
that at t = 90 hrs ξ3 is dominant in most of the gulf re-
gion, but that its impact greatly diminishes with the pas-
sage of the hurricane, particularly around the path of the
latter. As can be seen from Figure 14, ξ4 becomes domi-
nant in precisely the same regions. Thus, concerning the
sensitivity of SST, and for the present range of parame-
ters, the interplay between ξ3 and ξ4 that was observed
locally at the buoy location, also occurs in most of the
gulf. It is also interesting to note that the sensitivity con-
tours exhibit structures that are reminiscent of the evo-
lution of ocean eddies. Similar observations have in fact
been made in internal vortex dominated flows [23].

5.2 Local sensitivity

As noted earlier, one can readily estimate local sensitiv-
ities by differentiation of the PC expansion with respect
to random variables. Letting U(ξ ) = ∑

P
k=0 UkΨk(ξ ), one

can compute the partial derivatives of U with respect to
ξi, i = 1, . . . ,d, which results in:

∂U
∂ξ j

∣∣∣
ξ

=
P

∑
k=0

Uk
∂Ψk

∂ξ j

∣∣∣
ξ

.

For each of the basis functions Ψk, which are d-variate
polynomials defined in (5), we have

∂Ψk

∂ξ j
=

∂

∂ξ j

d

∏
i=1

ψ
αk

i
(ξi) =

dψ
αk

j

dξ j
∏
i 6= j

ψ
αk

i
.

Thus, with the multi-index construction the computation
is reduced to the differentiation of 1D polynomials.

As an illustration, we examine the local sensitivities
of SST at the buoy location, specifically by computing
the local indices,

D j(ξ ) =
∣∣∣∂SST (t,ξ )

∂ξ j

∣∣∣, j = 1, . . . ,4.

Figure 15 shows the evolution of Di for ξ = (0,0,0,0)
and ξ = (0,0,0,0.8). The first point, ξ = 0, corresponds
to the expected value of the random parameter vector,
whereas the second point, corresponds to a large value
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Fig. 14 T4 sensitivity contours for SST. Plots are generated for t =
90 hrs (top) and t = 147 hrs (bottom).

of the ξ4. Thus, the results contrast two realizations, one
corresponding to the mean value of the parameters, and
a second corresponding to a high drag coefficient. In the
first case, the local sensitivity of the solution is initially
dominated by the background diffusivity (ξ3) though both
D3 and D4 (wind drag coefficient) become comparable as
the hurricane approaches the buoy location. In contrast,
ξ = (0,0,0,0.8), the wind drag coefficient rapidly be-
comes dominant, with its senstivity factor achieving am-
plitudes several folds large than the remaining ones. The
present results thus highlight the large variability that oc-
curs with the selected parameter ranges, and the utility of
conducting a global assessment of the sensitivity of the
solution to uncertain parameters.

6 Integral quantities

We now turn our attention to analyzing the global sensi-
tivity of the predicted circulation to the uncertain model
inputs by examining spatially averaged (integral) quan-
tities. Our motivation is two fold; on one hand, the be-
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Fig. 15 Evolution of the local sensitivity indices, Di, i = 1 . . . ,4, at
ξ = (0,0,0,0) (top) and ξ = (0,0,0,0.8) (bottom). The first verti-
cal line indicates the time at which the hurricane enters the Gulf,
whereas the second one indicates a time at which the hurricane is
close to the buoy.

havior of integral quantities provides a meaningful and
well-founded means of comparing predictions to obser-
vations, as well as comparing the predictions of different
models. On the other hand, the averaging that is inherent
in the definition of integral quantities is often expected to
lead to observables that exhibit a smoother dependence
on uncertain inputs than local, time-varying signals. Ac-
cordingly, one can anticipate that integral QoIs would ex-
hibit simpler distributions and thus admit simpler repre-
sentations than instantaneous field variables. In this sec-
tion, we briefly address this question in the context of the
present ocean circulation database.

Following [15], we focus specifically on the average
sea surface temperature in a region enclosing the hurri-
cane track, as well as the average heat flux in a circular
region around the center of the hurricane. Such QoIs are
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frequently used both to characterize the predicted circu-
lation, as well as analyze the predictive skill of various
models.

As in [15], a rectangular control box is selected for
the purpose of defining a “regionally-averaged” SST. As
depicted in Figure 16, the hurricane track cuts through
the control box. To obtain the mean sea surface temper-
ature within this region, we start from corresponding PC
representation,

SST (x, t,ξ ) .=
P

∑
k=0

SSTk(x, t)Ψk(ξ ),

and estimate the box-averaged temperature, SST , through:

SST (t,ξ ) =
1
N

N

∑
i=1

SST (xi, t,ξ ),

where xi, i = 1, . . . ,N are the grid points lying within the
control box. We derive a spectral representation for SST
by inserting the PC representation of SST into the above
definition:

SST (t,ξ ) =
1
N

N

∑
i=1

SST (xi, t,ξ )

.=
1
N

N

∑
i=1

P

∑
k=0

SSTk(xi, t)Ψk(ξ )

=
P

∑
k=0

( 1
N

N

∑
i=1

SSTk(xi, t)
)

Ψk(ξ ).

Thus, the spectral coefficients of SST (t) are the averages
of the corresponding coefficients of SST (x, t) over the
control box. The mean of SST is computed respectively
through:

〈
SST

〉
(t) = SST 0(t) =

1
N

N

∑
i=1

SST0(xi, t),

or alternatively,

〈
SST

〉
(t) = SST 0(t) =

1
N

N

∑
i=1
〈SST (xi, t)〉 .

Similarly, the variance of the box-averaged temperature
is readily estimated using:

Var(SST ) =
P

∑
k=1

SST 2
k(t)

〈
Ψ

2
k
〉
.

In addition to the mean temperature in the control
box, we examine the heat flux in a circular region around
the center of the hurricane, a quantity which is frequently
used as a measure of potential strengthening or weaken-
ing of the hurricane [15]. Since our primary interest is
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Fig. 16 Contours of expected SST at selected time instants. The
track of the hurricane and its instantaneous location (red dot) are
also indicated. Also depicted is the boundary of the control box.
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Fig. 17 Contours of the mean heat flux at selected times as indi-
cated. The concentric circular lines denote the distance (in kilome-
ters) from the center of the hurricane. The thicker line denotes the
boundary of the circle of 150-km radius, centered over the eye of
the hurricane, over which the heat flux is averaged. The average
value is shown in the label.

the global sensitivity of the stochastic solution to the un-
certain inputs, a simplified approach is adopted by inte-
grating the heat flux over a circle of fixed radius, Rt =
150 km, around the center of the hurricane. The resulting

stochastic average heat flux, Q, is function of time and of
the germ ξ . An analogous methodology to that used for
SST is used in order to estimate its PC representation,
and consequently its statistical properties.

As previously discussed, we are primarily interested
in characterizing the mean, variance, and parametric sen-
sitivities for the averaged SST and heat flux. Before pro-
ceeding to this analysis, we illustrate in Figures 16 and 17
the evolution of the mean temperature and of the mean
heat flux. The figures show instantaneous contours of the
mean temperature field and of the mean heat flux, respec-
tively, and depict regions over which the spatial averages
are obtained.
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Fig. 18 Average expected SST in the control box,
〈
SST

〉
, over time

with one standard deviation bounds. Here we can see the average
cooling in the control box over time.
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Fig. 19 Average expected heat flux in Rt ,
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Figures 18 and 19 show the evolution of the
〈
SST

〉
and

〈
Q
〉
. Also plotted in both cases are curves that lie
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one standard deviation away from the mean prediction.
Consistent with [15], the passage of the hurricane leads
to a monotonic decrease in the average temperature in
the control box, and this behavior is consistent with evo-
lution of the mean temperature field shown in Figure 16.
This is accompanied by a monotonic increase in the stan-
dard deviation. The mean and standard deviation of Q
generally increase over the time interval depicted, though
their behavior is clearly not monotonic.

To further examine the behavior of the solution, we
plot in Figure 20 instantaneous PDFs of the box-averaged
temperature, SST . The PDFs are seen to gradually shift
towards the left, consistent with the monotonic decrease
of the mean shown in Figure 18. Note that long tails ex-
tending towards lower temperature develop in these dis-
tributions and that these tails become more pronounced
as time evolves. We have also examined the PDFs of the
average heat flux Q, which were found to exhibit simi-
lar trends to the PDFs of SST . However, in this case the
PDFs shift to the right as time evolves, and long tails ex-
tend towards higher heat flux values. For brevity, these
results are omitted.

The observed skewed PDFs with long tails in integral
quantities are somewhat unexpected, because the smooth-
ing associated with spatial averaging is typically expected
to lead to simpler distribution functions. Evidently, the
present experiences indicate that this may not always hold
true. Specifically, in the present case, the PDFs of the
box-averaged temperature (Figure 20) exhibit essentially
the same features as those determined locally (Figure 8).
This highlights a rather complex response of the solution
to the uncertain parameters, and suggests that in realistic
scenarios simplified stochastic representations may not
be readily applicable.

Figures 21 and 22 show the evolution of the global
sensitivity indices for SST and Q, respectively. Consis-
tent with previous observations, the results indicate the
wind drag coefficient dominates the variability in the av-
erage heat flux, Q. Meanwhile, consistent with previous
observations, the variance in SST is dominated by the
background diffusivity in the early stages of the compu-
tation. However, the effect of the wind drag coefficient
becomes clearly dominant when the hurricane enters the
control region.

7 Conclusions

A sparse spectral projection approach was implemented
to propagate and quantify parametric uncertainties in an
OGCM. The simulations focused on the impact of the
subgrid mixing parameters and wind drag coefficient on
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Fig. 20 Distributions of SST , at selected times.

the circulation in the GOM. High resolution HYCOM
simulations, forced by hurricane Ivan winds, were used
for this purpose.

A non-intrusive spectral projection scheme, based on
a Smolyak sparse quadrature grid, was used to derive the
PC representation of the stochastic response of selected
QoIs. A brief numerical study was initially conducted to
analyze the impact of the sparse grid refinement. For the
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Fig. 21 Global sensitivity indices for SST over time. The sensitiv-
ity indices Ti are as in Table 3.
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Fig. 22 Global sensitivity indices for Q over time. The sensitiv-
ity indices Ti are as in Table 3. Note that here the stochastic wind
drag coefficient dominates the variability in Q, because Q is always
computed around the center of the hurricane.

presently considered conditions and uncertain parameter
ranges, a level 5 sparse quadrature was found to be suffi-
cient for adequate representation of the model response.
This amounted to the construction of a sparse database
consisting of 385 independent HYCOM realizations.

Computations were then used to demonstrate the ap-
plication of the resulting PC representation to estimate
various statistical quantities. These included the analy-
sis of the behavior of means and variances of both field
and integral quantities, as well as the use of spectral rep-
resentation to efficiently estimate probabilities of model
variables being in a given interval. Also illustrated was
the use of the PC representation as a surrogate model,
namely through the implementation of simplified change
of measure technique which analyzed the effect of re-
stricting the range of one of the uncertain parameters.

Attention was focused on assessing the global sen-
sitivity of the solution to the uncertain inputs, namely

through the evaluation of Sobol indices. In particular, the
analysis considered the average temperature in a region
enclosing the track of the hurricane, as well as the heat
flux in a circular region around its center. Computations
showed that for the conditions of the experiments, the
variability in the mean temperature becomes dominated
by the uncertainty in wind drag coefficient as the hurri-
cane enters the control region. The uncertainty in wind
drag coefficient was also found to be a dominant factor
in the variability in the integral heat flux.

The analysis also indicated a complex model response,
which featured the generation of skewed distribution func-
tions with extended tails. These were observed for both
local quantities, included the SST, as well as integral QoIs,
including the regionally-averaged SST and the integral
heat flux around the center of the hurricane. This points
to the need for generally conducting a systematic sam-
pling of the random parameter space with sufficient res-
olution to capture key statistical features of the solution.

In follow up work, we will focus on extending the
present methodology by incorporating adaptive sampling
schemes, which hold the promise of minimizing the com-
putational cost required for an adequate representation
of uncertainty in selected QoIs. In addition, we will also
focus on exploiting PC representations as model surro-
gates, particularly in a Bayesian framework for data as-
similation and parameter inference.
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