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We present a systematic study of homogenization of diffusion in randedianwith emphasis on tile-
based random microstructures. We give detailed examples of sexetalmedia starting from their
physical descriptions, then construct the associated probability spadegerify their ergodicity. After
a discussion of material symmetries of random media, we derive criteribe isotropy of the homoge-
nized limits in tile-based structures. Furthermore, we study the periodizgjonithm for the numerical
approximation of the homogenized diffusion tensor and study the algdsittate of convergence. For
one dimensional tile-based media, we prove a central limit result, givoanerete rate of convergence
for periodization. We also provide numerical evidence for a similar atlitnit behavior in the case of
two dimensional tile-based structures.
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1 Introduction

Modeling of physical processes in composite media with regiEneous microstructure is a common
problem in material science and engineering. The analysisah problems requires solving differential
equations with rapidly varying coefficientslomogenizations a mathematical technique for deriving
the form of the effective homogeneous medium as the lengile sif the microstructure approaches
zero. There is a large body of literature on the homogeminaif periodic media; see, e.g. Bensoussan,
Lions & Papanicolaou (1978),8Bchez-Palencia (1980), Giik, Shamaev & Yosifian (1992), Pankov
(1997), and Cioranescu & Donato (1999). For random medi&selev (1979), Papanicolaou & Varad-
han (1981), Jikov, Kozlov & Olmik (1994), Berdichevsky, Jikov & Papanicolaou (1999p&acolaou
(1995), Telega & Bielski (2002), Chechkin, Piatnitski & Smaev (2007), Sab (1992), and Zhikov &
Pyatnitski (2006). In this article we present some well-known and som& results in homogeniza-
tion of the diffusion equation in random media, with speeiaiphasis otile-basedmedia; these are
microstructures obtained by regular arrangements of venlapping random tiles that cover the space.
One of our aims is to provide a clear overview of homogenirain diffusive random media. In
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Section 2 we state the homogenization theorem after saffinthe basic tools and terminology. In
Section 3 we study symmetry groups of random media and ésatiinditions that imply the isotropy
of the homogenized limit.

The rest of the article specializes mostly to tile-basedienethich are introduced in Section 4. We
set up the probability spaces from physical descriptionuchsmedia and show the ergodicity of the
corresponding dynamical systems. Although ergodicityiliethe heart of the proof of convergence and
homogenization, the practical verification of it is oftemtwersome and therefore in the literature on
random media it is common to assume, rather than verify écdpdIn this article we make a point
in verifying the ergodicity. In Section 5 we provide sevegahmples of tile-based media to show the
utility of the abstract theory and in Section 6 we furthebelate on these by examining their isotropy.

The characterization of the homogenized limit provided iy homogenization theorem, see Sec-
tion 2, does not readily lend itself to numerical computagiairectly. Periodizationprovides a prac-
tical method for computing the homogenized diffusion tenfite convergence of which was shown
in Owhadi (2003) and Bourgeat & Piatnitski (2004). For nuicedrstudies via the method of periodiza-
tion see Bystim, Dasht & Wall (2004) and By<im, Engstom & Wall (2006). Alternative numerical
approaches are explored in Efendiev & Pankov (2)0Bfendiev & Pankov (200&), and Wu, Efendiev
& Hou (2002).

In Section 7, after reviewing the general theory of periation, we provide a self-contained con-
vergence proof specialized to one-dimension. This helfsity out the main idea of periodization in
the general case, much in the same way that the proof of hamezgi®n in one-dimensional media
motivates the theory in higher dimensions. Specializingrte-dimensional tile-based media, we prove
a Central Limit Theorem showing the rate of convergence@bttuence of periodized approximations
of the diffusion coefficient. We supplement this with nuroatiresults for illustration. Additionally, we
provide computational results that demonstrate the cgevee and a central limit behavior of the pe-
riodization in two-dimensions. We conclude with a conjeetan the rate of convergence. Such central
limit behavior has been observed in numerical experimemsnted in Yue & E (2007) in the context of
heterogeneous multiscale methods.

Central limit results for the convergencesafiutionsof boundary value problem to the homogenized
limit may be found in Bourgeat & Piatnitski (1999) and Bal (&). In contrast, our central limit results
are concerned with the convergence of the perioddifdsion tensoto the homogenized tensor.

2 Preliminaries

In this section, we summarize notations and definitions wikhtbe used throughout the remainder of
this article.

2.1 Automorphisms

Following Cornfeld, Fomin & Singa(1982) we let:

Definition 1. An automorphism of a probability spa¢®, F, i) is a bijection¢ : {2 — (2 such that for
all F € F, ¢(F)and¢~1(F) belong toF and

u(F) = p(¢(F)) = p(o™"(F)).

We use the notatioAut({2) to denote the set of all automorphisms@n
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2.2 Notation for matrices

We write R™*" for the space of. x n matrices. We let:
nxn = the subspace of symmetric matriceRfit*"

Sym

b = the orthogonal group of matrices R "

nx. = the proper orthogonal group of matriceshrt*".

For any0 < 11 < 1o We let

B(vi,ve) ={A€RY: nlé? <& AE<mfe]* VEeR"}

sym

Let (S, Y) be a measurable space. Af: S — RZX" is a measurable mapping such thitr) €

sym
E(v1,12) forall z € S (or almost allz € S if there is a measure ofb, X)) then we say4 belongs to
E(Vl, Vo, S)

2.3 The dynamical system

An n-dimensional measure-preserving dynamical systeon {2 is a family of automorphismg’, :
2 — (2, parametrized by € R", satisfying:

1L Tpyy=T,oT,forallz,y € R”,
2. Ty = I, wherel is the identity map orf2.

3. The dynamical system jsintly measurable oR"™ x (2 in the sense that the mappifg, w) —
T.(w) is B(R™) ® F/F measurable, whei®(R") is the Borelr-algebra orR™.

AsetE C £ is said to benvariantunder the dynamical systemif 7, ' (F) C E for allz € R".

Definition 2. The dynamical systeffi is ergodicif all its invariant sets have measure of either zero or
one.

The dynamical systert is ergodic if and only if for every measurable functign: 2 — R the
following holds (Cornfeld et al. 1982):

[f(Tm(w)) = f(w) for all z and almost alu} = f = constanta.s. (1)

Corresponding to a functiofi: {2 — X (whereX is any set) we define the functigiy : R" x 2 —
X by
fT(:E,w) = f(TE(w)), reR"we .

For eachu € £2, the functionfr (-,w) : R — X is called therealizationof f for thatw.

2.4 Solenoidal and potential vector fields

Let (£2, F, u) be a probability space with the-algebraF and a measurg. We will write E{X} for
theexpected valuef the random variablé& on 2. Thatis,E{X} = [, X dp.



4 Alexanderian, Rathinam, Rostamian

Let T be ann-dimensional measure-preserving dynamical systen?@nd letZ?(2; R") be the
space of square integrable vector fiefds(? — R"™. We define:

2 () ={f € L*(2;R") : fr(-,w) is a potential field oR™ for almost allw € 2}

po )=

L2,(92) = {f € L*(£;R"™) : fr(-,w) is a solenoidal field olR"™ for almost allw € 2}
POf(Q) {feLpot( ) :E{f}:O},
BOI(Q) {fELsol ) E{f}ZO}

These spaces induce orthogonal decompositiods af?; R"), cf. Jikov et al. (1994, page 228):

Theorem 1(Weyl's Decomposition) If the dynamical systerfi is ergodic, then:

LZ(Q? Rn) Vgot( ) D LbOl('Q) = Vsol(“Q) D Lpot(Q) (2)

2.5 Homogenization

Consider a matrix-valued functiod : R" — RZ7r. Assume thatd € E(vi,1o, R") for some
0< 1%} <

For anye > 0 let A°(z) = A(z/e). Then we say thatl admits homogenizatioifi there exists a
constant symmetric positive definite matri® such that for any bounded domainh ¢ R™ and any
f € H1(D) the solutions: andu® of the boundary value problems

®3)

—div(AVu) = f onD and —div(A°Vu®) = f onD
uw=0 ondD wW=0 ondD

satisfy, as — 0:

ut —u® in Hy(D),
AVut — A°Vu®  in L*(D).

Itis a classic result that ifl is periodic onR™ then it admits homogenization. The basic references in
Bensoussan et al. (1978)aikchez-Palencia (1980), Cioranescu & Donato (1999)niet al. (1992),
and Pankov (1997) represent but a small sample of the vesttlire on the subject.

The main focus of our article is on the random case, thatésbtdundary value problem:

{dw (A @) Vu(.w) = @) inD. @

u(z,w) =0 onoD,

wherew € 2 and({2, F, i) is a probability space.

A fully developed theory exists for the case whén R" x 2 — R\ is a stationary and ergodic
random field. The early work in the area by Kozlov (1979) andam:olaou & Varadhan (1981) is
greatly expanded upon in the monograph Jikov et al. (1994)his theory, without loss of generality,
one begins with a functionl € E(vq, 9, 2) and considers its realizationfz,w) = Ar(z,w) with

respect to am-dimensional ergodic dynamical systdim Concerning this, we have:
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Theorem 2. (Jikov et al. 1994, Theorem 7.4) Let € E(vq,1v9,(2) and T be ann-dimensional
measure-preserving ergodic dynamical systemfbhn Then, for almost allv € {2, the realization
Ar(-,w) admits a homogenizatiod®. Moreover, A° is positive-definite, independent of and is
characterized by,

veV?

pot

A% = inf : n
A= int [ (+0)A€+udn vEeR ©

Remark 1. Although Theorem 2 gives a complete characterization ofithiéing homogenized prob-
lem, the characterization is not constructive becausev@lves integrating on an abstract probability
space. Thenethod of periodizatiofOwhadi 2003, Bourgeat & Piatnitski 2004), described intfeec?,
provides a concrete way of approximatidg numerically.

2.6 Linear algebra

Here we collect some observations and results from linggbah, which will be needed in our discus-
sions of symmetry and isotropy.
A subspacé’” C R" is said to be invariant undet € R"*" if AV C V.

Definition 3 (Irreducible group (Weyl 1946))Let G be a matrix group inR™*". We callG anirre-
ducible groupf it has the following property: If a subspadéof R" is invariant underq for all @ € G,
thenV is either{0} or R".

As an example of an irreducible grouplR?*? consider the cyclic rotation group of order@; =
{I, Rgy, Ris0, Ra70}, WhereRy € R%*? denotes rotation by angteabout the origin. Another example
of an irreducible group iR ", . An example of a group which is not irreducible@s = {I, Riso}
because it leaves any one-dimensional subspace invariant.

The following result is a simple case of Schur's Lemma (Sd905, Fulton & Harris 1991, James

& Liebeck 2001) which is a basic result in group represeotatheory.

Lemma 1. LetG be anirreducible group iR™*™ and supposel is a symmetric matrix that commutes
with every@ € G. ThenA is a scalar multiple of identity.

Proof. Let « be an eigenvalue of, and define the mapping = A — ol. It follows that, BQ = @B
for all @ € G. Moreover, sincey is an eigenvalue ofl, Null(B) = Null(A — aI) # {0}. Now, if
x € Null(B), thenBQz = QBz = 0, that isQz € Null(B). Therefore Null(B) is invariant under
Q for all Q € G. Sinced is irreducible (andNull(B) # {0}), it follows thatNull(B) = R™. That s,
B =0, and henced = ol. O

Let us give an example that shows that the condition of ircéality in Lemma 1 cannot be removed.
Consider the symmetriz x 2 matrix A = (‘g ’;) Supposed commutes with elements of the reducible
groupG = {I, R} whereR = ({ % ). ThenAR = RA implies thath = 0 whenceA = (¢ %) where
a andc are arbitrary.

The following two results give conditions under which a mais a multiple of identity in two and
three dimensions.

Proposition 1. LetS € R2x2and@Q € R?*?, \ {£I}. ThenS commutes witig) if and only ifS = AL

Sym

Proof. Suppose&s@Q = QS. The only subspace &? invariant under) is either{0} or R%. Hence, the
result follows from Lemma 1. The converse implication isiti. O
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Proposition 2. Letu and v be linearly independent vectors R3. Fix o and 3 in (0, 7). Suppose
S € R2X3 commutes wittR® and R?. ThenS is a multiple of identity.

Sym

Proof. We will show that the only subspacesBf invariant under bottR® and R? are {0} andR?;
the result would then follow from Lemma 1. Note that the onlpspaces dR? invariant unde are:

{0}, span{u}, span{u}t, R3.
Similarly, the only subspaces B invariant under?? are:
{0}, span{v}, span{v}t, R3.
Sinceu andv are linearly independent, it follows thft} andR? are the only subspacesBf invariant

under bothR® and RY. O

3 Symmetries of random media and questions of isotropy

In this section we develop an abstract framework and stugdyesting but nontrivial conditions on the
conductivity matrixA+ (z, w) which imply that the homogenized conductivity matti4}, is a multiple
of identity, that is, the homogenized medium is isotropic.

Definition 4. Let@ be an orthogonal matrix and be a dynamical system. We say that E(v1, v, §2)
is Q-invariantif there exists, € Aut({2) such that:

AT (LU, C(Ld)) = QAT(QTx7w)QT7
for almost allx € R™ and almost altv € 2.

Remark 2. The above definition can be best understood in terms of themudative diagram in Fig-
ure 1. LetM = E(v1,v5,R"), and leti : 2 - M : w — Ap(-,w); thatis,i(w) is the conductivity
tensor field corresponding to € (2. Given@Q € R"X", we defineQ : M — M by

orth ?
(QAr)(z,w) = QAr(Q"z,w)Q".

From Definition 4, it follows that the diagram in Figure 1 commies. This means that any collection
M c M of conductivity tensors and their rotated versiGhs/ are equally likely, that is;,L(i‘l(M)) =
p(i~1(QM)). This follows since,

p(i7HQ@M)) = p(¢THTHQM)) = p(T1QTIQ(M)) = p(iTH (M),

where the first equality holds sinceis measure preserving, and the second equality holds diece t
diagram in Figure 1 commutes.

Proposition 3. SupposeA is Q-invariant for a given@ € Rzrf}’;. Then the corresponding homoge-
nized matrix4° commutes witl@, that is, A°Q = Q.4°.

Proof. We know by Theorem 2 thatlr(z,w) admits homogenizatiod® almost surely. Moreover, by
Q-invariance

AT (I, C(w>) = QAT(QTxv w)QT7 (6)
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QO M
¢ Q
Q : M

FiG. 1. Diagram showing invariance undgr

where¢ € Aut(£2). Since( is measure preservingir (z,((w)) admits homogenization® almost
surely, and using (6) QA7 (QTz,w)QT admits homogenizationd also. On the other hand, it is
straightforward to see thd#(z,w) = QA7 (Q7z,w)QT admits homogenizatio®.A°QT for almost
all w € (2 (this follows by performing a change of coordinates in thérdtion of homogenization).
Therefore,4° = QA°QT, and hence the result. O

Theorem 3. SupposeA is @-invariant for all @ € G, whereG is an irreducible group. Then, the
corresponding homogenized matri is isotropic, that is,A° = A\ where) is a constant scalar.

Proof. By Proposition 3, we know thad® commutes with al) € G. The result follows from Lemma 1.
O

3.1 Special Cases of 2D and 3D

Here we give sufficient conditions for isotropy of the homaiged matrixA° in two and three dimen-
sions. The case of two dimensions is addressed by the folippioposition.

Proposition 4. SupposeA is Q-invariant for a given@ € RijtiJr \ {£I}. Then, the corresponding

homogenized matrix® is isotropic; that is4° = A\I where) is a constant.
Proof. The result follows from Proposition 3 and Proposition 1. O
In the case oR? we can appeal to our linear algebra developments above.

Proposition 5. Supposed is both R2-invariant and RZ-invariant, whereR® and R? are as in Propo-
sition 2. Then, the corresponding homogenized matfixs isotropic, that is,A° = AT where) is a
constant.

Proof. The result follows from Proposition 3 and Proposition 2. O

4 Tile-based random media: General theory

The general theory of random media described in the pre@eatons is based on characterization of
a random medium in terms of an abstract probability spaceaasighamical system acting on it. The
physical properties of such a medium are then obtained ghrtherealizationformalism described in
Section 2.3.

The more interesting problem, in practice, is the revetsat is, to construct the probability space
and a dynamical system, starting from the the physical gagmn of the random medium. Although
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this process is an essential aspect of the modeling of ramaedig, it is rarely brought out and analyzed
in detail in the literature. It is among our goals in this@#ito bring this issue to focus. As we will see
in the following sections, the process is not quite trivial.

In Section 4.1 we introduce the Sgtof all possible tiles, and put a probability measure on ithie
simplest case of a “black-white” checkerboard where tles tan be only one of two possibilities, the set
Y consists of two elements and the probability measure itedhe likelihood of occurrence of one or
the other tile. Subsequently, we usas building blocks for the sample space of all possiblezattins.

In Section 4.2 we construct a dynamical systgfn}.cr~ on the probability space which tiles the space
with random tiles from the séf. We show that the dynamical system is measure preservingrgodic.

In Section 4.3 we start with the physical description of thaductivity tensord¥) of each tiley in Y’
and construct the overall conductivity tensbr (x, w) that enters the boundary value problem (3). The
constructions are rather abstract but they are sufficigigheral to include many interesting applications
as illustrated in Section 5.

4.1 The probability space

Let the sefy” parametrize the possible choices for a tile and considegprhteability space€Y, Fy-, uy ),
where Fy is an appropriater-algebra anduy is a probability measure. Form the product space
(S, Fs,ps) = [12- (Y, Fy, uy), where ther-algebraFy is the product-algebra ang.s is the product
measure. Finally, to account for translations, define thezal/probability space

(2, F, ) = (S, Fs, ns) @ (Tor™, B(Tor™), Leb ), (7)

whereTor™ = [0,1)™ is then-dimensional unit cube with the opposite faces identifidlor™) is the
Borel o-algebra oriTor™, andLeb is the Lebesgue measure.

4.2 The dynamical system and ergodicity

We construct the measure-preserving and ergodic dynasystmi that enters the definition of the
conductivity matrix in the boundary value problem (4). Aereents € S has form

s={sj}jezn, s;€Y,
and an element € {2 has form,
w=(s,7) s€S, e Tor". (8)
First we define the dynamical syste{rﬁz}zezn on S by
T.({s;}jezn) = {5542} ez
Let us define the projection operatdPs : R™ — Z"™ and P, : R"™ — Tor" by

Pi(z) = |z], z€eR",
Py(z)=x—|z], xzeR"

Here |z | is the vector whose elements are the greatest integersrlesgial to the corresponding ele-
ments inz. Note that eaclt € R" has the unique decomposition

x = Pi(z) + Py(x).



Homogenization, Symmetry, and Periodization of Randomi&led 9

Next, define the dynamical Systq@w}xeRn onTor™ by
R,(7) = Py(x +7), 7€ Tor".
Finally, we define the dynamical systefi, }.cr» On {2 by
Tp(w) = Tu(s5,7) = (Tp, (o) (5), Bu(T)), s€S, 7€ Tor™ 9)

Let us verify the group property for the dynamical systemveb&learlyZ(w) = w for all w € (2.
Moreover, we showl;, o T, = T4, for all z andy in R" as follows. Letv = (s, 7) be an element of
2, as described in (8), and note that

Tory (@) = Tury({55}1,7) = ({854 P (@tysn b Po(z +y + 7)) - (10)

On the other hand

T (Ty(w)) = To (Ty({sj}, T)) =T; ({Sj+P1<y+r)}, Pa(y + T))
= ({Sj+P1(y+T)+P1(rJrPg(er'r))}a Py(z + Pa(y + T)))- (11)
Sinceu + P (v) = Pi(u + v) for everyu € Z",v € R™, we have
P(y+7)+Pi(z+P(y+7)=Pi(z+Piy+7)+ Po(y+7)) =Pz +y+71). (12)
Also, sinceP;(u + v) = P(v) for everyu € Z™ andv € R™, we have,
Py(z+P(y+7)) =P(a+P(y+7)+ Po(y+7)) = Pz +y+71). (13)
Combining (11), (12), and (13) we obtain

T, (T'y(w)) = ({5j+P1 (w+y+T)}7 PQ(I +y+ T)) = Tr+y(w)a

where the last equality follows from (10).
The measure preserving property of the dynamical syqt€m.cr~ follows from the following
proposition:

Proposition 6. The dynamical systef¥, }.cr~ defined in(9) is measure preserving.

Proof. Letz € R" be fixed but arbitrary. It is sufficient so show thafT; (4 x B)) = u(A x B)
for all rectanglesd x B € F, whereA € Fg andB € B(Tor"). Note that we can partitioor™ as
follows,
Tor™ = L—Ij E;, E;j={re€Tor": P(xz+7)=j}
jEZN

wherelt) denotes a disjoint union. Note also that only finitely manyEfare non-empty. Then, for a
rectangled x B in F we have

T (A x B) =l (T;71(4) x [R;A(B) N B]).

J
J
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SinceTj and R, are measure preserving, we conclude that

u(T (A x B)) zu( x [R;(B )Zﬂs JLeblR, ' (B) N ]

(4) 3 Leb [, 1(B) N Ey] = ps(4) Leb (R, '(B)) = pis(4) Leb(B) = u(A x B). (14)

O

What remains to show is ergodicity of the dynamical systemit is well-known that the dynamical
system{T. }.cz~ is ergodic (Walters 1982, Cornfeld et al. 1982). We use thigrove the following:

Proposition 7. The dynamical systef¥., }.cr~ defined in(9) is ergodic.
Proof. Let f be a measurable function shwhich is invariant undet’, that is,
f(Tp(w)) = f(w) VoeR", pas. (15)

Recall thatw € 2 has the formw = (s, 7), with s € S and7 € Tor™. Now by (15) we have also
f(T.(w)) = f(w), forall z € Z". SinceR.(7) = 7 for z € Z",

f(S,T) = f(Tz<577-)) = f(Tz(S)aRz(TD = f(Tz(s)’T)
Letting f7(s) = f(s, 1), this takes the form
F(Tu(s)) = f7(s) VzeZm (16)

We know /7 (s) is measurable ofi. Since{7. }.cz~ is ergodic, then (16) implies that for eachf™ is
constanius-a.s. . Therefore,

fls,7)=¢(r) s€ 8, 1€ Tor". a7

Next, using (15) again we have
F(Ti(w)) = f(w) Vt e Tor™ (18)
Now, using (17) we have
F(Ti(@)) = f(To,wim) (5), Re(7)) = $(Ri7);
also, f(w) = f(s, 7) = ¢(7). Therefore, (18) gives that
$(Ri(r)) = ¢(7) Vt € Tor™, ae. (19)

Finally, recalling ergodicity of the dynamical systefi®; };cTor, We get thatp(r) = const a.e. and
hence,f = const a.e. Thus, the assertion of the proposition folloesf(1). O
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FiG. 2. Typical realizations of random “checkerboards” in dm&, or three dimensions.

4.3 The function4

Each elemeny in the sample spac¥ specifies a certain type of tile. Let®) : Tor" — Ry be
the conductivity function associated with that tile. Picke S and let's writes = {s;};cz». This
defines an infinite sequence of tiles with conductivitie*s)};cz-. We define the random variable
A Q2 — R by

Aw) = A (1), forw = ({s;},7) € ©2. (20)

From the definitiori, in (9) we see that:

T,(w)="T, ({sj},r) = ({sj+p1($+7)}, Py(x + T))

Consequently,
A(Tp(w)) = A®) (Py(z + 7)), whereo = Py(z + 7).

Let us recall thatdy (z,w) = A(T,(w)) defines the conductivity matrix of the medium and appears as
a coefficient in the boundary value problem (4).

5 Tile-based random media: Examples

In the following sections we give several examples to illaigt the construction of concrete probability
spaces in terms of the medium’s physical properties. In eash, it suffices to identify the probability
space(Y, Fy, uy ) and the tile conductivitiesl”) as defined in Section 4.3. The machinery developed
in Section 4 then assigns the appropriate dynamical systeinth@ conductivity tensoA.

5.1 Checkerboard-like tilings

For our first example we examine a most basic random struetane:-dimensional medium consisting
of then-dimensional cubé0, 1)™ and its translations along the integer latt&ein R™. The cubesitiles
are identified as eithetray or white with probabilitiesp and1 — p, respectively, wherg € (0,1).
Figure 2 depicts representative samples in 1, 2, and 3 diorens
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FIG. 3. Atile-based medium tiled with randomly rotated ellipses.

Define the spac® of Section 4.1 as the s&t = {gray, white}. On the measurable spag¥, 2Y)
define the measuney as

py ({gray}) =p,  py ({white}) =1 —p.

The squares (or cubes) are characterized by their condyatiatricesA('#y) and A(White) - each
of which is a functionTor™ — RZJ". In particular, if the tiles are made of homogeneous mdteria

then these conductivities are constant functions.

5.2 Randomly rotated ellipses

Consider a two-dimensional, two-phase structure congistf randomly rotated homogeneous congru-
ent elliptic grains embedded within homogeneous squae tiVe assume that the ellipses are centered
at the centers of the tiles and are sufficiently small so they tlo not extend beyond tile boundaries.
We tile the two-dimensional plane with these, as in Figure 3.

The construction of the probability space for this struetamounts to specifying the state space
(Y, Fy, py ), the rest of the construction remains as before. Wé&let [0, 7) represent the set of
rotation angles and we sé& = B(Y) anduy (E) = X Leb(E), for all E € Fy, implying that the
rotation angles are uniformly distributed @y ).

The conductivity matrixA®) : Tor? — R2%2 for each rotation anglé € Y is defined as

Sym
A(e)(l‘) - Olll if z € 50,
N aol ifzdé&,

wherea; andas are positive constants ady is the interior of the rotated ellipse.

5.3 Variable-size circular grains

Consider a two-dimensional, two-phase structure congistf homogeneous circular grains of varying
sizes embedded within homogeneous square tiles. We askanibé circles are centered at the centers
of the tiles and are sufficiently small so that the do not extegyond tile boundaries. We tile the two-
dimensional plane with these, as in Figure 4. The circlei @@ distributed randomly in the interval
[ro,71]. Thus we havd” = [rg, 1], Fy = B(Y) anduy (E) = —2— Leb(E) forall E € Fy.

T1—T0
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The conductivity matrixA(") : Tor? — R2%2 for eachr € Y is defined as

sym

A(T) (:L') o Oél] if z S CT,
Naod ifzéc,

wherea; andasy are positive constants aggl is the interior of the circle of radius

O 00|00 0|0
© 0 0|l @0 |0
0 0 0 0 @O ° 0@
o 0o o @0 e 0O
o @ @ oe|o|o|e |0
Q@ 0@ @ @ o |@|e
0 0@ o o @ |0
@ e|lojeo| @ o |0® O

FIG. 4. Atile-based medium tiled with randomly sized circles.

This example may be modified easily to allow random pertishatof the circle centers relative
to the tile. Suppose the centers are disturbed by the amdyrasd J, in the z andy directions,
whered, andJ, are distributed uniformly in the intervals-«, +a] and[—8, +0], respectively. Also
assume that, r1, o and g are such that the circles don't overlap; see Figure 5. Indhse, we have
Y = [~a,+a] x [-8,+8] x [ro,1], Fy = B(Y), anduy (E) = Leb(E)/(4aB(r1 — 1)) for all
E € Fy. The conductivity matrix may be defined much in the same wayetsre.

5.4 Random Honeycomb

Here we construct a two-dimensional two-phase random toamely structure. The constructions and
the arguments are similar to the case of structures basegttangular lattice presented in the previous
subsection.

Consider a honeycomb structure as depicted in Figure 6 stmtsof a regular hexagonal tiling
of the plane, where each hexagon has side-length one andlis ofija homogeneous material chosen

(€]

Q o

OOOOOOOO

[©)

@
o

ole|l @@

(9]
® )
o) Q@
© (5]
© )
] 5

OOOOOOOO
OOOO OOOO
0 g/®@ 0 @|°

© 0 o0c @ O°

oo o0

[¢]

FIG. 5. Atile-based medium tiled with randomly sized and pertdrtiecles.
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randomly from among two possibilities of eithgray or white with probabilitiesp and1 — p. The
construction of the probability space, the dynamical systnd the functiod is similar to the random
checkerboard except for the following two differences: ijHe construction of the probability space,
we replaceTor? with H, where H is the hexagon of unit side-length centered at the origit Vi
opposite sides identified. 2) In the construction of the dyical systeni’, we redefine the projections
P, and P,. Each hexagon is identified by the integer pair, n) that defines the hexagon’s position
throughc = mwv; + nve where{vy,vo} is a lattice basis. For example we may fef, = <\/§,O>,
ve = (v3/2,3/2). Then, given any: € R?, there is a uniqué: € H and(m;,mz) € Z* such
thatz = h + [mivy + mavz]. Accordingly, we defineP;(z) = (my,mo) and Py(z) = h. The
construction of a stationary and ergodic dynamical systesogeds in the same way as in the case of
the checkerboard-like structures.

FIG. 6. A random honeycomb structure.

6 Tile-based random media: Isotropy

In this section, we apply the isotropy results of Section 8eieeral concrete examples.

6.1 Random checkerboard

Recall the two-dimensional random checkerboard congtduict Section 5.1. Let us assume the con-
ductivity matricesA(&») and A("hite) gre isotropic, that ist(e") = q, I and A(¥hite) — 4,7 where

a1 anday are positive constants ards the identity matrix. The following result, which is notwe-
see Jikov et al. (1994, page 237) for example—is a consequdioce Proposition 4.

Proposition 8. The homogenized material corresponding to the checkedboamstructed as above is
isotropic, that is,A° is a multiple of identity.

Proof. Let Q be a 90 degree rotation of the plane. Consider the realizaii@"QTx(w)). This cor-
responds to another realization, say7,(w’)), for somew’ € 2. We let{(w) = w’. Note that
¢ : 2 — (2 sends the element = ({s;},7) € 2tow’ = ({s,(;)},p(1)) € £, where{o—(j)}j€Z2

is a permutation o{j}jez2 andp is an affine map involving rotations and translationsTan?. Both

of these are measure preserving maps, thereftseneasure preserving; thukis Q-invariant and the
assertion follows from Proposition 4. O
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Remark 3. Proposition 8 remains true if the coefficients anda, are variable as long as they are
invariant under 90 degree rotationsBér?.

6.2 Three-dimensional random “checkerboard”

Recall the three-dimensional random checkerboard cartettun Section 5.1. Let us assume the con-
ductivity matricesA () and A(White) gre multiples of identity, that igl(&®) = ¢, T and A(White) —
as I, wherea; anda, are positive constants.

Proposition 9. The homogenized material corresponding to the three-dsineal checkerboard con-
structed as above is isotropic, that i4? is a multiple of identity.

Proof. Let 29° andR)° be 90 degree rotations about thandy axes. The result follows by noting that
Ais R2-invariant anngo-invariant and applying Proposition 5. O

6.3 Random honeycomb

Consider the random honeycomb constructed in Section ®e#us. assume the conductivity matrices
Aleray) and A(White) are multiples of identity, that isl(&™Y) = ¢, T and A(White) = 4,1, wherea,; and
as are positive constants.

Proposition 10. The homogenized material corresponding to the random loomely constructed as
above is isotropic, that is4® is a multiple of identity.

Proof. Let @ be the2 x 2 matrix of rotation byr /3. The result follows by noting thad is Q-invariant
and applying Proposition 4. O

7 Numerical computations and periodization

The homogenized limi1° of a random medium, characterized by formula (5) in Theoreimlves
integration on the abstract probability spa@e This is not practical for explicit computations. The
method of periodizatigrintroduced in Owhadi (2003), is a practical approximasoheme for comput-
ing homogenized limits of random media. Also see Bourgeatatritski (2004) for further work along
these lines and Bysgim et al. (2004) and Bysim et al. (2006) for numerical experiments.

Periodization proceeds by fixing a single realizatiog (2 of the random structure. Then one cuts
acubeS, = [0, p|™ of sizep from it, then tiles the space periodically with that cubeeifiithe homog-
enized limit.4?(w) of the resultingperiodic medium is computed in the usual way; e.g., Bensoussan
et al. (1978), &nchez-Palencia (1980). It is shown in Owhadi (2003) and@eat & Piatnitski (2004)
that

AP (w) — A° almost surely, ap — oo, (21)

where A%, given by formula (5), is independent of

The purpose of this section is to place the method of peratidiz in the context of the theory of
tile-based media that we have developed in the previousosectin Subsection 7.1 we analyze the
periodization process in one-dimensional tile-based méethese computations are quite explicit since
the partial differential equation of equilibrium reducesan ordinary differential equation. Although
the one-dimensional results are straightforward to dethvere is no convenient place in the literature
for reference, therefore we have seen it appropriate tcegétiese results here.
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Theorem 4 gives a self-contained proof of the periodizati@morem in 1D, via Birkhoff's Ergodic
Theorem. Theorem 5 establishes a central limit result wpickiides the rate of convergence of the dif-
fusion coefficient with successive improvements of thegabriation approximation. In Subsection 7.2.2
we give results of a series of numerical experiments whogegse is to illustrate the theory developed
up to that point.

Section 7.3 reports the results of numerical experimentpéoiodization in two dimensions. We
present numerical evidence for central limit behavior Entb the one-dimensional case and summarize
our results in the form of a conjecture. Such central limihdgor has been observed in numerical
experiments reported in Yue & E (2007) in the context of hmdeneous multiscale methods.

Central limit results for the convergencesiflutionuc to the homogenized limit® may be found
in Bourgeat & Piatnitski (1999) and Bal (2008). In contrastr central limit results are concerned with
the convergence of thdiffusion tensot4” to the homogenized tensgt®.

7.1 Periodization in one-dimensional media
Forw € {2 consider the one-dimensional version of the boundary vadaklem (4):

{ — (ap(z,w)d (z,0)) = f(z) InD=(0,1),

u(0,w) = u(l,w) =0, 22)

wherear(z,w) = a(T,(w)) anda is the one-dimensional counterpart4in Section 2.5. Specializing
Theorem 2 to one dimension, it can be shown that for almost all (2 the problem (22) admits
homogenization with the homogenized coefficient given by

(23)

_ 1
a= ——F7+-
E{s}
To approximatez numerically we can use the method of periodization as faloWenoteS, =
(0, p) and let
ab,,.(z,w) = ap(r mod S,,w) = a(Tx mod 5, (w)), rzeR,we . (24)

per

For eacty > 0, ¢ > 0, andw € {2, we consider th@eriodized problem

_(age,,(f,w)u;(x,w))’ = f(z) inD=(0,1),
u,(0,w) = uy(l,w) = 0.

(25)

The effective conductivity of this medium as— 0 can be computed using the standard homogenization
theory; c.f. Bensoussan et al. (1978):

1

C_Lp(o.)) 1T _ 1 .
P fO aper(z,w) dzx

(26)

The general convergence result in (21) statesdh@t) — a almost surely ag — oco. However, due
to the special nature of the problem in 1D we may produce alsipnoof with an explicit limit.

Theorem 4. For almost allw € (2, a”(w) — a, asp — oo with a as in(23).
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Proof. First note that using the change of variable» x:/p in (26) we get

_ 1 1
ap(w) =1 1 = 1 ) (27)
fO aber(pz,w) dx fO ar(pz,w) dx
where the second equality follows from the fact that#fas 51,
aper(pr,w) = ar(px mod S,,w) = ar(pr,w). (28)
By Birkhoff’'s Ergodic Theorem we conclude that for almostale (2, asp — oo,
1 1 .
—\E{} in L?(D), (29)
ar(pz,w) a
therefore,
| 1
/ dx—>E{}, asp — oo. (30)
o ar(pr,w) a
But then it follows from (27) that for almost all € (2,
lim a”(w) = lim — } =7 11 .
p—r00 p—>00 fo o) dx {g}
O

7.2 Periodization of tile-based media

From this point on, we consider periodization in the contxtile-based random media which we
constructed in Section 4. Recall that in the case of tileetasedia, a sample poiate (2 is a pair(s, 7)
wheres € S fixes a random structure ande Tor™ is a shift. We note that shifting a structure does not
change its homogenization property; thatdss, ) admits homogenizationl® if and only if A(s, 0)
admits homogenizatiod®. One may also Veri%ILHéo A?(s,7) = A if and only if ph_>H§o AP(s,0) =

A°. Therefore, when discussing numerical simulations angization it suffices to consider only
unshifted media. This essentially amounts to sampling etegifrom a set of full measure f

7.2.1 A central limit theorem for one-dimensional tile-bdsnedia

We begin this section by considering the one-dimensionaioe of the tile based random media intro-
duced in Section 4. Thus the medium consists of an infiniteesgce of segments of unit length whose
conductivity profiles is parameterized by the probabiljase(Y, 7y, uy ). Eachy € Y corresponds to
a conductivity profile f,,, which is a function (not necessarily constant) frlor' to R. The ellipticity
condition is:

0<wv < fy(z) <y, forallz € Tor', forally €Y.

In the case of 1D tile-based media, the effective condugtigiven in (23), is

1 L |
2= /Y /0 £ i ) (31)
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We shall establish the rate of convergenceAifv) to a. Since shifts are immaterial, we lef(s) =
a’(s,0) for s € S. We define the random varialdle Y — R by

1
1
= ——dr,
o Jfy ()

Let us recall a few basics from asymptotic theory in proligbil Given a sequence of random
variables{ X, }, we write X, 53 X to denote convergence in distribution (Williams 1991).

b(y) yev. (32)

Definition 5. (Brockwell & Davis 1991, page 209) A sequercé, } of random variables is said to be
asymptotically normalith meanmn,, and standard deviation,, if ,, > 0 for n sufficiently large and

Xp—my D
"7  asn— oo,
On

with Z ~ N(0,1). In this case we use the notatia,, is AN (m,,,c2) asn — oo.
The following result will be useful in what follows:

Lemma 2. (Brockwell & Davis 1991, page 210) X, is AN (m,o2), wheres,, — 0 asn — oo, and
if g is a function differentiable at with ¢’(m) # 0, then

. 2
9(X,) is AN (g(m), (g'(m))*02).
The main result of this section is:

Theorem 5. The sequencéa(} en is AN (L, n‘:fp) asp — oo, Withm = E {b} ando? = Var {b}
whereb is as in(32).

Proof. Forw = (s,0) = ({s;},0) € £, let

o
bi(s’:/o Fole) ™

P 1 [
/0 o) dox = ;bi(s),

Aper

and note that

and for each, E {b;} = E{b} = m andVar {b;} = Var{b} = 0. LetX, = % 2, b;. Since
b; are i.i.d. with meanm and variancer?, we have, by the Central Limit Theorem, that@as+ oo,
X,is AN (m, "—:) Applying Lemma 2 withg(X) = 1/X, we obtain,
2
. (¢'(m))"o?
9(X,) 18 AN (g(m), 25222 ).
Sincea) = g(X,) =1/X,, thenagp — oo,
1 o2
p- 1 o
ag |SAN<m7 4p>'
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Remark 4. The above result suggests that for laggehe sequence of periodized approximatiafjs
behave as

which gives a rate of convergenceof'/? for periodization in 1D.

7.2.2 Numerical experiments in 1D

In this section we present the results of simulations of dingensional tile-based random media which
serve two purposes: (@) to illustrate the results of theiptsvsections and (b) to motivate the more
involved two-dimensional setting in the subsequent sastio

We consider a random structure where the conductivity grédift each tiley € Y is the constant
function given byf, (1) = y for all 7 € Tor', with Y = [1, 2] equipped with the Lebesgue measure;
that is, the conductivity of each tile is a uniform randomiable in[1,2]. Figure 7 depicts the con-
ductivity function for a particular realization of such a diem. The effective conductivity may be

computed explicitly using (31):
_ 2t -1 1
a—(/1/0 ;dey) =2

The random variablé defined in (32), becomesy) = 1/y, and thus, we havé& {b} = In2 and
Var {b} = E {8} — (E{b})* = 1/2 — (n2)2.

25

15

0.5
0

é 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50
FIG. 7. A representative conductivity function of a realizatmf a random 1D tile-based medium with homogeneous segments.

We computea’ (w;) for p = 2¢, 4 = 1,...,6 and for realizationsv;, j = 1,...,10,000. The
histograms in Figure 8 show the convergence of the apprdioma” to a asp gets larger. We note
that the distribution ofi” gets more and more centered around the value 6f 1/In2 ~ 1.4427, as
expected.
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FiIG. 8. Random 1D tile-based medium with homogeneous segmentisbuati®on of a* for differentp
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p ‘ Mean ‘ Variance ‘ 7542,; Ratio
2 | 1.472096 | 4.367275e-02| 4.233972e-02| 1.031484
4 | 1.457368| 2.166391e-02| 2.116986e-02| 1.023337
8 | 1.450063| 1.070949e-02| 1.058493e-02| 1.011768
16 | 1.446389| 5.362583e-03| 5.292465e-03| 1.013249
32 | 1.444506| 2.663250e-03| 2.646232e-03| 1.006431

64 | 1.443598| 1.325444e-03| 1.323116e-03| 1.001760

Table 1. Random 1D tile-based medium with homogeneous segnfesymsiptotic behavior ofi” asp — oco. The last column
shows the ratio of the sample variance and the asymptoticnearipredicted by Theorem 5.

—e— variance ||
L

102

Variance

1073 1 ! ! ! ! L4

FIG. 9. Random 1D tile-based medium with homogeneous segmentspgagot of the sample variances faf. Also shown is
the graph of the theoretical convergence rat©¢t /p) for comparison.

The computational results in Table 1 illustrate the asymiptoehavior ofa”. The columns labeled
‘Variance’, ‘n;’f ', and ‘Ratio’, list the sample variance, the asymptotidaace, and their ratio, respec-

tively. We see that the ratio approaches 1, as predicted bprEim 5. Also, we can see in the log-log
plot in Figure 9 the expected asymptotic behaviotivbsp — oco.

7.3 Periodization in 2D

We present the results of two sets of computational expetisrfer estimating the effective properties
of checkerboard-like random media. The setup is similah&t presented in Section 5.1, that is, the

medium is constructed of two different tiles, saydy” and “white”, which occur with probabilitiep
andl — p and have isotropic conductivities:

AEay) — £ ()T and At — £ ()],

with
fl (Z) _ ek sin mxq sin wxo and fQ(J?) — e—k sin txq sinﬂmg) (33)

wherek = 0.3 andz = (z1,z2) € Tor?. The computations are more complicated than 1D case
because periodization now requires solving a partial difigal equation (the unit cell problem) on
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FiG. 10. The graph of the conductivity function of a realizatairthe random checkerboard, according to equation (33).

Tor? for each realization. This places limitations, most sigaifitly on computer memory, on how
large the cell of periodicity can be. For practical purposes choose the largest possibleonsistent
with the available memory, then generate a large numberadizegions and compute the periodized
coefficients.A? and monitor the sample means and variances. If the stanéaration is sufficiently
small, then the sample mean is a good estimator of the desim@ogenized coefficiend’.

These numerical experiments clearly show that effectivedootivity matrix, .47 (w) is asymptoti-
cally normal, however unlike the 1D case, we have no prodiiattime. We offer this as a:

Conjecture 1. For 2D tile-based media we have:

A2 is AN(A°, 7Y asp - oo,
p

fori,j = 1,2, whereo;; does not depend gn

Bourgeat & Piatnitski (2004) give a rate of convergence effirm O(p~?) for periodization of
general random media. Their exponghtdepends on the mixing properties of the medium and is
difficult to estimate in general. According to our conjeetut = 2 for 2D tile-based media.

7.3.1 Numerical experiment #1 in 2D

Here we consider the casef= 1/2. This is rather special becaugé can be determined explicitly.
The following result which we state as a theorem, is showname®234 of Jikov et al. (1994):

Theorem 6. Let @ be the2 x 2 matrix of rotation byd0 degrees. Supposé be Q-invariant. Addition-
ally, assume that there exists a mapping Aut(£2) such thatA(¢(w))A(w) = kI for a.a.w € 2,

and¢ (T, (w)) = T (¢~ (w)). ThenA® = VkI.

Let us verify that our random checkerboard satisfies thenagons of the theorem. First, note that
the conductivityA is Q-invariant because the functiorfs and f, in (33) are invariant under 90 degree
rotations. Second, the mappiggn the statement of the theorem may be chosen as follows. iyor a
w=(s,7) € N2 definew = (3, 7) where

. white if s; = gray,
§; = )
! gray  if s; = white.
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[A]11 [A?]22
p Mean Variance Ratio ) Mean Variance Ratio
2 0.99939138| 3.87392708e-03 — 2 | 0.99960898| 3.87415798e-03 —
4 | 0.99900417| 8.29923510e-04 4.6678 4 | 0.99886380| 8.18404811e-04 4.7338
8 | 0.99972096| 2.15407332e-04| 3.8528 8 | 0.99971593| 2.15090563e-04 3.8049
16 | 0.99974253| 5.64378707e-05 3.8167 16 | 0.99973093| 5.63314550e-05 3.8183
32 | 1.00003515| 1.46838211e-05 3.8435 32 | 1.00003600| 1.45179876e-05 3.8801
64 | 0.99997816| 3.62430817e-06 4.0515 64 | 0.99997095| 3.58908744e-06 4.0450
[AP]12 [AP]21
) Mean Variance Ratio ) Mean Variance Ratio
2 0.00000000 | 0.00000000e+00 — 2 0.00000000 | 0.00000000e+00 —
4 | -0.00001521| 5.17427142e-07| 0.0000 4 | -0.00001521| 5.17427142e-07| 0.0000
8 | -0.00001938| 2.21103369e-07| 2.3402 8 | -0.00001938| 2.21103369e-07| 2.3402
16 | -0.00000147| 6.44481557e-08| 3.4307 16 | -0.00000147| 6.44481557e-08| 3.4307
32 | -0.00000278| 1.63013662e-08| 3.9535 32 | -0.00000278| 1.63013662e-08| 3.9535
64 | -0.00000056| 4.11889874e-09| 3.9577 64 | -0.00000056| 4.11889874e-09| 3.9577

Table 2. Experiment 1 of the random checkerboard: Asymptaiiabior of components od” asp — oco. The column labeled
‘Ratio’ shows the ratio of two consecutive variances. Theavece shrinks by a factor of four with each doublingeof

Then letp(w) = @. Itis easy to see (due o= 1/2) that¢ € Aut(f2). Third, from the expression (20)
for A(w) it follows that:

A(pw)Aw) = fi(7) f2(T)] = 1,

with f; and f, defined in (33). Therefore by Theorem 6, the homogenizedwiivity is A° = I.

Table 2 lists the outcome of our computations witk: 2¢, i = 1,...6 averaged over 1,000 realiza-
tions. We see that the meandf — I asp — oo, as expected, and the varianceéi§ —2) consistent
with the conjecture made above. See also the log-log plotgarE 11 which shows that the variance
for [A”]11 is O(p~2). The histograms in Figure 12 show the evolution of the distion of [A7];,
toward normal ag increases. To further bring this to light, we provide a clageof the histogram for
thep = 64 case in Figure 13.

7.3.2 Numerical experiment #2 in 2D

This set of experiments are identical with those in the mesisection except we Igt= 1/4. The
effective conductivity,4°, will be isotropic by Remark 3, however there is no longergslieit formula
for its value.

Table 3 lists the outcome of our computations with= 2%, i = 1,...,6 averaged over 1,000
realizations. We see that the mean4sf approaches a multiple of identity as— oo, as expected, and
the variance i€ (p—2) consistent with the conjecture made above. See also tHedpgiot in Figure 14
which shows that the variance f@4”]1; is O(p~2). The histograms in Figure 12 show the evolution
of the distribution of].4?];; toward normal ag increases. To further bring this to light, we provide a
close-up of the histogram for the= 64 case in Figure 16.



24 Alexanderian, Rathinam, Rostamian

- -

[ —e— variance ||

1072 ¢ g

o r ]

3] L 1
=

2 1074 E E

< = .|

- r ]

107° £

= | | | | | | S|

[\]
S
oo
—
(=2
w
[\
(=2
=

FiG. 11. Experiment 1 of the random checkerboard: Log-log pléhefsample variances f@A”], ;. Also shown is the graph of
the conjectured convergence rate(l1/p?) for comparison.

[AP]11 [AP]22
p Mean Variance Ratio p Mean Variance Ratio
2 | 0.94149083| 2.45200172e-03 — 2 | 0.94158409| 2.46292264e-03 —
4 | 0.94089838| 5.87271432e-04 4.1752 4 | 0.94093164| 5.88741898e-04 4.1834
8 | 0.94140841| 1.49404258e-04 3.9308 8 | 0.94137233| 1.48839971e-04 3.9555
16 | 0.94096033| 3.83403355e-05 3.8968 16 | 0.94095308| 3.82877003e-05 3.8874
32 | 0.94107328| 9.47318479e-06 4.0472 32 | 0.94108655| 9.39411259e-06 4.0757
64 | 0.94100935| 2.55592740e-06 3.7064 64 | 0.94101763| 2.54854442e-06 3.6861
[A?]12 [AP]21
p Mean Variance Ratio o Mean Variance Ratio
2 0.00000000 | 0.00000000e+00 — 2 0.00000000 | 0.00000000e+00 —
4 | -0.00001179| 2.80617913e-07| 0.0000 4 | -0.00001179| 2.80617913e-07| 0.0000
8 | -0.00000886| 1.21840925e-07| 2.3031 8 | -0.00000886| 1.21840925e-07| 2.3031
16 | 0.00000576 | 2.98058477e-08| 4.0878 16 | 0.00000576 | 2.98058477e-08| 4.0878
32 | 0.00000179| 7.23335555e-09| 4.1206 32 | 0.00000179| 7.23335555e-09| 4.1206
64 | 0.00000003 | 1.90536287e-09| 3.7963 64 | 0.00000003| 1.90536287e-09| 3.7963

Table 3. Experiment 2 of the random checkerboard: Asymptetiabior of components ol¥ asp — oo. The column labeled
‘Ratio’ shows the ratio of two consecutive variances. Theavece shrinks by a factor of four with each doublingeof
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0 0
0.85 0.9 0.95 1 1.05 11 0.85 0.9 0.95 1 1.05 1.1
p=32 p=64
300 . . . . . 300 .
2501 b 2501
2001 b 200F
1501 b 1501
1001 R 1001
501 1 50F
0 . . . . 0 . . l . .
0.85 0.9 0.95 1 1.05 11 0.85 0.9 0.95 1 1.05 1.1

FiG. 12. Experiment 1 of the random checkerboard: Distributioing4”],, for p = 2,4, 8,16, 32, 64, generated with 1,000
realizations.
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300

250r 1

200

150

100

50

0.995 1 1.005

FiG. 13. Experiment 1 of the random checkerboard: A close-up@hthtogram (1,000 samples) for the distributior].df],
with p = 64. Superimposed is the graph of the normal distribution with nasehvariance equal to the sample mean and variance.

[ R S E— |
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FiG. 14. Experiment 2 of the random checkerboard: Log-log pldhefsample variances f@A”],,. We see the constant slope
which indicates the observed rate of convergence. Also sliswhe graph of the conjectured convergence rai@@df/p?) for
comparison.
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300 : : 300
250¢ 1 250t
200¢ 1 200t
150¢ 1 150f
100} 1 100}
50¢ 1 50¢
89 0.95 1 1.05 89 0.95 1 1.05

FiG. 15. Experiment 2 of the random checkerboard: Distributioing4”],, for p = 2,4, 8,16, 32, 64, generated with 1,000
realizations.
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300

2501

2001

150

100¢

50r

0 0.936 0.938 0.94 0.942 0.944 0.946

FiG. 16. Experiment 2 of the random checkerboard: A close-upehtstogram for Distributions dfA”],; with p = 64.
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