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Abstract

We consider the minimization of convex functionals on a real Hilbert space. The req-
uisite theory is reviewed, and concise proofs of the relevant results are given.

1 Introduction

We are concerned here with the classical results on optimization of convex function-
als in infinite-dimensional real Hilbert spaces. When working with infinite-dimensional
spaces, a basic difficulty is that, unlike the case in finite-dimension, being closed and
bounded does not imply that a set is compact. In reflexive Banach spaces, this prob-
lem is mitigated by working in weak topologies and using the result that the closed
unit ball is weakly compact. This in turn enables mimicking some of the same ideas in
finite-dimensional spaces when working on unconstrained optimization problems.

It is the goal of these note to provide a concise coverage of the problem of minimiza-
tion of a convex function on a Hilbert space. The focus is on real Hilbert spaces, where
there is further structure that makes some of the arguments simpler. Namely, proving
that a closed and convex set is also weakly sequentially closed can be done with an ele-
mentary argument, whereas to get the same result in a general Banach space we need
to invoke Mazur’s Theorem. The ideas discussed in this brief note are of great utility
in theory of PDEs, where weak solutions of problems are sought in appropriate Sobolev
spaces.

After a brief review of the requisite preliminaries in Sections 2– 4, we develop the
main results we are concerned with in Section 5. Though, the results in this note are
classical, we provide proofs of key theorems for a self contained presentation. A simple
application, regarding the Dirichlet problem, is provided in Section 6 for the purposes
of illustration.

2 Weak convergence

In general, for a Banach space X, we know by Banach-Alaoglu Theorem that the
closed unit ball in X∗ is compact in weak∗ topology. Furthermore, if X is a reflexive
Banach space, then we get as a consequence of Banach-Alaoglu Theorem that closed
unit ball in X is weakly compact. Hence, in particular, in a Hilbert space, we know that
any bounded sequence has a weakly convergent subsequence.
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Let us recall that a sequence {xn} in a Hilbert space H converges weakly to x if,

lim
n→∞

〈xn, u〉 = 〈x, u〉, ∀u ∈ H.

We use the notation xn ⇀ x to mean that xn converges weakly to x.

Before moving further we recall an important point about notions of compactness
and sequential compactness in weak topologies. It is common knowledge that compact-
ness and sequential compactness are equivalent in metric spaces. The situation is not
obvious in the case of weak topology of an infinite-dimensional normed linear space.
In fact, in infinite-dimensional normed linear spaces, the weak topology is not metriz-
able. However, there is an analogous result to metric spaces relating the ideas of weak
compactness and sequential weak compactness in weak topologies. The well known
Eberlein-Šmulian Theorem (see e.g. [1, 2]), states that in Banach spaces the notions of
weak compactness and sequential weak compactness are equivalent.

3 Lower Semi-continuous Functions

We start by looking at the definition of lower semi-continuous functions.
Definition 3.1. A function real valued function f on a Banach space is lower semi-
continuous (lsc) if

f(x) ≤ lim inf
n→∞

f(xn)

for all sequences {xn} in X such that xn → x (strongly).

Similarly, we define a weakly (sequentially) lower semi-continuous function as below.
Definition 3.2. A function f is weakly sequentially lower semi-continuous (weakly lsc)
if

f(x) ≤ lim inf
n→∞

f(xn)

for all sequences {xn} such that xn ⇀ x.

The following result, which we state without proof is useful when working with lsc
(or weakly sequentially lsc) functions.
Theorem 3.3. Let X be a Banach space and f : X → R. Then the following are
equivalent.

(a) f is (weakly sequentially) lsc.

(b) epi(f), is (weakly sequentially) closed.

Here epi(f) denotes the epigraph of the function f :

epi(f) := {(x, r) ∈ dom(f)×R : f(x) ≤ r}.

4 Convex Functions

We recall the definition of a convex function.
Definition 4.1. Let X be a metric space and C ⊆ X a non-empty convex set. A function
f : C → R is convex if ∀α ∈ [0, 1] and ∀x, y ∈ C

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).
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Note that the function f in the above definition is called strictly convex if the above
inequality is strict for x 6= y and α ∈ (0, 1). We end this section by recalling the following
useful characterization of convex functions.
Lemma 4.2. Let X be a metric space and C ⊆ X a non-empty convex set. A function
f : C → R is convex if and only if epi(f) is convex.

Let us also recall the notion of a coercive function, as we will be considering such
functions shortly.
Definition 4.3. Let X be a Banach space and let f be a real valued function on X; that
is, f : X → R. The function f is called coercive if the following holds:

lim
‖x‖→∞

f(x) =∞.

5 Optimization in a Hilbert space

In this section, we derive a generalized Weierstrass Theorem which gives the criteria
for existence of a minimizer for a function on a Hilbert space. The discussion is focused
on real Hilbert spaces. In what follows H will denote a real Hilbert space.

5.1 Closed convex sets in a Hilbert space

The following result is of great utility in what follows.
Lemma 5.1. Let K ⊆ H be a (strongly) closed and convex set. Then, K is weakly
sequentially closed.

Proof. Let {xn} be a sequence in K and suppose xn ⇀ x∗. We show x∗ ∈ K by
showing x∗ = ΠK(x∗), where ΠK(x∗) denotes the projection of x∗ into the closed
convex set K. Recall that the projection ΠK(x∗) satisfies the variational inequality,
〈x∗ −ΠK(x∗), y −ΠK(x∗)〉 ≤ 0 for all y ∈ K. Therefore,

〈x∗ −ΠK(x∗), xn −ΠK(x∗)〉 ≤ 0, ∀n. (5.1)

Next, note that since xn ⇀ x∗, we have,

‖x∗ −ΠK(x∗)‖2 = 〈x∗ −ΠK(x∗), x∗ −ΠK(x∗)〉
= lim

n→∞
〈x∗ −ΠK(x∗), xn −ΠK(x∗)〉

Therefore, in view of (5.1), we have that ‖x∗ −ΠK(x∗)‖ = 0, that is, x∗ = ΠK(x∗) and
the proof is complete.

An immediate consequence of Lemma 5.1 is given by:
Corollary 5.2. Let f : H → R a lsc convex function. Then, f is weakly lsc also.

Proof. Since f is convex, epi(f) is convex. Moreover, because f is (strongly) lsc, epi(f)

is strongly closed. Hence, we can apply the previous lemma to get that epi(f) is weakly
sequentially closed also, which in turn implies that f is weakly sequentially lsc.

5.2 Optimization in a Hilbert Space

The following generalized Weierstrass Theorem is in a sense the main point of this
note. The proof given here is classical, and follows in similar lines as that given in [3].
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Theorem 5.3. Suppose C ⊆ H is a weakly sequentially closed and bounded set. Sup-
pose f : C → R is weakly sequentially lsc. Then f is bounded from below and has a
minimizer on C.

Proof. First we show f is bounded from below. Suppose to the contrary that f is not
bounded from below. Then there exist a sequence {xn} ∈ C such that f(xn) < −n for all
n. Now since C is bounded {xn} has a weakly convergent subsequence {xnk

}, xnk
⇀ x∗.

Moreover, C is weakly sequentially closed and hence x∗ ∈ C. Then, since f is weakly
sequentially lsc we have f(x∗) ≤ lim inf f(xnk

) = −∞ which is a contradiction. Hence,
f is bounded from below.

Next, we show the existence of a minimizer. Let {xn} ∈ C be a minimizing sequence
for f ; that is f(xn) → inf

C
f(x). Let α := inf

C
f(x). Since C is bounded and weakly

sequentially closed, it follows that {xn} has a weakly convergent subsequence xnk
⇀

x∗ ∈ C. Next, since f is weakly sequentially lsc we have

α ≤ f(x∗) ≤ lim inf f(xnk
) = lim f(xnk

) = α.

Hence, f(x∗) = α and the Theorem is proved.

Remark 5.4. The assertions of the above theorem remain valid in reflexive Banach
spaces.

The following Theorem involves a strongly lsc convex function on a strongly closed
and convex set.
Theorem 5.5. Let C be a convex, strongly closed, and bounded subset of H. Suppose,
f : C → R is a strongly lsc and convex function. Then f is bounded from below and
attains a minimizer on C.

Proof. The idea of the proof is to show that the hypotheses of Theorem 5.3 hold. C is
strongly closed and convex and hence by Lemma 5.1 is also weakly sequentially closed.
Moreover, Since f is strongly lsc and convex, it is also weakly lsc by Corollary 5.2. Thus,
we have f : C → R weakly lsc and C a weakly closed and bounded set in H which allows
us to apply the Generalized Weierstrass Theorem to conclude that f is bounded from
below and attains a minimizer on C.

Note that in the above Theorem, if f is strictly convex the minimizer will be unique;
this follows by noting that if we had two distinct minimizers u1 and u2 in C, f(u1) =

f(u2) = inf
u∈C

f(u), then, by strict convexity of f , we would get f((u1 + u2)/2) < f(u1),

which is a contradiction.

Finally, we have the following result on strongly lsc convex coercive functions on a
Hilbert space.
Corollary 5.6. Let f : H → R be a strongly lsc, convex, and coercive function. Then f
is bounded from below and attains a minimizer.

Proof. Under the assumptions of the corollary, it is straightforward to note that f is
bounded from below. Next, fix a δ > 0; since f is coercive, there exists M ∈ R such
that f(x) ≥ inf

H
f(y) + δ for all x ∈ {x | ‖x‖ > M}. Then consider f : C → R with

C = {x | ‖x‖ ≤M} and apply the previous Theorem.
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6 A simple application

Consider the Dirichlet problem,{
−∆u = f in Ω,

u = 0, on ∂Ω,

where Ω ⊂ Rn is a bounded domain, and f ∈ L2(Ω). It is well known that the weak
solution of this problem is the solution to

min
u∈H1

0 (Ω)
J(u) :=

1

2

∫
Ω

|∇u|2 dx−
∫

Ω

fu dx

It is straightforward to note that J is convex and continuous, and coercive (coercivity
of J is a consequence of Poincare-Friedrich inequality). Thus, the existence of a unique
minimizer is ensured by application of Corollary 5.6.
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