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Abstract

We consider two different representations of the mean and posterior co-
variance operator in infinite-dimensional linear Gaussian inverse problems.
The results considered here are known. The goal is to provide some clear
and self-contained derivations.

1 Introduction

Let M be an infinite-dimensional real separable Hilbert space. Consider a
Bayesian inverse problem of estimating m ∈ M using the observation model

y = Fm+ η. (1.1)

Here, F : M → Rd is a continuous linear transformation, and η ∈ Rd models
observation error and is distributed according to N(0,Γ), where Γ ∈ Rd×d sym-
metric positive definite. We assume a Gaussian prior N(0,C0). The discussions
that follow can be easily adapted to the case of a nonzero prior mean m0 that
is sufficiently regular.1 1 More precisely, m0 must

belong to the Cameron–
Martin space, which is
defined as E := Range(C

1/2
0 ).

We also define,
H̃ := C

1/2
0 F∗Γ−1FC

1/2
0 .

This is the prior-preconditioned data misfit Hessian. The present terminol-
ogy is motivated from a variational perspective. Namely, H̃ is a symmetrically
preconditioned version of the data-misfit Hessian in the optimization problem
characterizing the MAP point.2 2 Recall that in linear Gaus-

sian inverse problems the
MAP point and the posterior
mean coincide.

In the present setup, it is known [2] that the posterior is a Gaussian measure
µpost = N(m∗,C), with

C = C0 − C0F
∗(FC0F

∗ + Γ)−1FC0 (1.2)

m∗ = C0F
∗(Γ + FC0F

∗)−1y. (1.3)

In what follows, we seek to justify the alternative formulas for m∗ and C. Specif-
ically, we seek to prove the following results:
Theorem 1.1. The following holds

C = C
1/2
0 (I + H̃)−1C

1/2
0 . (1.4)

Theorem 1.2. The map point satisfies

m∗ = CF∗Γ−1y. (1.5)
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Note that the covariance operator on the left-hand side of (1.4) is the well-
known “Woodbury form” of the posterior covariance operator, which avoids
explicitly inverting C0. The operator on the right-hand side also avoids C−1

0

and is convenient for computations. In particular, this form facilitates using a
low-rank spectral decomposition of H̃ for fast computations, a structure that
commonly arises in ill-posed inverse problems [1]

2 The covariance expression

We first prove some technical lemmas. These lemmas are not meant to be
general and concern only the specific problem under study.
Lemma 2.1. Let G : M → Rd be a bounded linear operator. Then I +G∗G and
I + GG∗ are bounded linear operators that have a bounded inverse.

Proof. Note that K = G∗G is a positive selfadjoint compact operator and I +K

is injective. Hence, by the Fredholm alternative, I +K has a bounded inverse.
An analogous argument shows that I + GG∗ has a bounded inverse as well.

Lemma 2.2. Let G : M → Rd be bounded linear operator. The following holds.

I−G∗(I + GG∗)−1G = (I + G∗G)−1.

Proof. The result follows from a direct calculation:

(I + G∗G)
(
I−G∗(I + GG∗)−1G

)
= I−G∗(I + GG∗)−1G+G∗G−G∗GG∗(I + GG∗)−1G

= I + G∗G−G∗(I + GG∗)−1G−G∗(GG∗)(I + GG∗)−1G

= I + G∗G−G∗((I + GG∗)−1G+ (GG∗)(I + GG∗)−1G
)

= I + G∗G−G∗[(I + GG∗)(I + GG∗)−1]G

= I + G∗G−G∗G

= I.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let the operator F̃ be defined by F̃ := Γ−1/2FC
1/2
0 . Note

that F̃ is a finite-dimensional operator. Furthermore, the following are straight-
forward to note

F̃∗F̃ = H̃ (2.1)

Γ1/2(I + F̃F̃∗)Γ1/2 = FC0F
∗ + Γ. (2.2)

Subsequently,

C = C0 − C0F
∗(FC0F

∗ + Γ)−1FC0

= C0 − C0F
∗(Γ1/2(I + F̃F̃∗)Γ1/2

)−1
FC0 by (2.2)

= C0 − C0F
∗Γ−1/2(I + F̃F̃∗)−1Γ−1/2FC0

= C
1/2
0

[
I− C

1/2
0 F∗Γ−1/2(I + F̃F̃∗)−1Γ−1/2FC

1/2
0

]
C

1/2
0

= C
1/2
0

[
I− F̃∗(I + F̃F̃∗)−1F̃

]
C

1/2
0

= C
1/2
0 (I + F̃∗F̃)−1C

1/2
0 by Lemma 2.2

= C
1/2
0 (I + H̃)−1C

1/2
0 . by (2.1)
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3 The m∗ expression

We first record the following technical lemma.
Lemma 3.1. Let G : M → Rd be a bounded linear operator. Then (I +

G∗G)−1G∗ = G∗(I + GG∗)−1.

Proof. By Lemma 2.1, both I + G∗G and I + GG∗ are bounded operators that
admit bounded inverses. Next, note that (I + G∗G)G∗ = G∗(I + GG∗). Right-
multiplying this equation by (I+GG∗)−1 and then left-multiplying the resulting
equation by (I + G∗G)−1 yields the desired identity.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. As in the proof of Theorem 1.1, we define the operator
F̃ := Γ−1/2FC

1/2
0 . Consider the expression (1.3) for m∗. We have

m∗ = C0F
∗(Γ + FC0F

∗)−1y

= C0F
∗Γ−1/2(I + F̃F̃∗)−1Γ−1/2y

= C
1/2
0 F̃∗(I + F̃F̃∗)−1Γ−1/2y,

where the second equality follows from (2.2). Therefore, using Lemma 3.1
and (2.1),

m∗ = C
1/2
0 (I + F̃∗F̃)−1F̃∗Γ−1/2y

= C
1/2
0 (I + H̃)−1F̃∗Γ−1/2y

= C
1/2
0 (I + H̃)−1C

1/2
0 F∗Γ−1y

= CF∗Γ−1y.
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