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Abstract

We consider two different representations of the mean and posterior co-
variance operator in infinite-dimensional linear Gaussian inverse problems.
The results considered here are known. The goal is to provide some clear
and self-contained derivations.

1 Introduction

Let M be an infinite-dimensional real separable Hilbert space. Consider a
Bayesian inverse problem of estimating m € M using the observation model

y = Fm+1. (1.1)

Here, F : M — R¢ is a continuous linear transformation, and n e R4 models
observation error and is distributed according to N(0,T), where I' € R%*? sym-
metric positive definite. We assume a Gaussian prior N (0, Cy). The discussions
that follow can be easily adapted to the case of a nonzero prior mean mg that
is sufficiently regular.’

We also define, 3
H:=Ccl/*F T 'FC)/

This is the prior-preconditioned data misfit Hessian. The present terminol-
ogy is motivated from a variational perspective. Namely, H is a symmetrically
preconditioned version of the data-misfit Hessian in the optimization problem
characterizing the MAP point.?

In the present setup, it is known [2] that the posterior is a Gaussian measure
Hpost = N (m*, C), with

(1.2)
(1.3)

C = Cy — CoF*(FCoF* +T)'FCy
m* = CoF*(I' + FCoF*)~1y.
In what follows, we seek to justify the alternative formulas for m* and C. Specif-

ically, we seek to prove the following results:
Theorem 1.1. The following holds

C=Cy*a+mtcy?. (1.4)
Theorem 1.2. The map point satisfies
m* = CF*T1y. (1.5)
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1 More precisely, mo must

belong to the Cameron-
Martin space, which is
defined as € := Range(CJ/?).

2 Recall that in linear Gaus-
sian inverse problems the
MAP point and the posterior
mean coincide.
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Note that the covariance operator on the left-hand side of (1.4) is the well-
known “Woodbury form” of the posterior covariance operator, which avoids
explicitly inverting Cy. The operator on the right-hand side also avoids Cg !
and is convenient for computations. In particular, this form facilitates using a
low-rank spectral decomposition of H for fast computations, a structure that
commonly arises in ill-posed inverse problems [1]

2 The covariance expression

We first prove some technical lemmas. These lemmas are not meant to be
general and concern only the specific problem under study.
Lemma 2.1. Let G : M — R be a bounded linear operator. Then 1+ G*G and
I+ GG* are bounded linear operators that have a bounded inverse.

Proof. Note that K = G*G is a positive selfadjoint compact operator and [ + K
is injective. Hence, by the Fredholm alternative, I + K has a bounded inverse.
An analogous argument shows that I + GG* has a bounded inverse as well. O

Lemma 2.2. Let G : M — R? be bounded linear operator. The following holds.
I-G*(I+ GG 'G=1+G*q)!
Proof. The result follows from a direct calculation:
I+ G*G) (I - G*"(I1+ GG*)’lG)

=1-G*I1+GG")'C+G*G - G*GG* I+ GG 'a
=1+G*G - G*I+GG*)"'G - G*(GG*)(I+CGGH G
=1+G*G-— G*((I + GGG+ (GGH)(T+ GG*)_lG)
=1+ G*G - G*[(I+CGG*)(I1+ GGG
=1+G"G-G*'G

We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. Let the operator F be defined by F :=T'"~ 1/2FCl/2 Note
that F is a finite-dimensional operator. Furthermore, the following are straight-
forward to note

F*F=H (2.1)
Y21+ FF)TY2 = FCoF* + T (2.2)

Subsequently,
C = Cy — CoF*(FCoF* +T)'FCy
— Co — CoF* (TV/2(1+ FF)I'/2) T'RC, by (2.2)
= Cy — CoF*T~Y2(I 4+ FF*)~I0~Y2FC,
= Cy*[1- Gy PP T2 BRI 2RCY o
= Cy/*[1- B (14 B 1R o2
+15*13)*1C(1)/2 by Lemma 2.2
+H) oy by (2.1) O
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3 The m* expression

We first record the following technical lemma.
Lemma 3.1. Let G : M — RY be a bounded linear operator. Then (I +
G*G)7'G* =G*(I+GG*)!

Proof. By Lemma 2.1, both I + G*G and I + GG* are bounded operators that
admit bounded inverses. Next, note that (I + G*G)G* = G*(I + GG*). Right-
multiplying this equation by (I+GG*)~! and then left-multiplying the resulting
equation by (I + G*G)~! yields the desired identity. O

We are now ready to prove Theorem 1.2.

froof of Theorem 1.2. As in the proof of Theorem 1.1, we define the operator
F:= F*1/2F05/2. Consider the expression (1.3) for m*. We have

m* = CoF*(I' + FCoF*) ™!
_ COF*F—l/Q(I + FF*)—lF—l/Qy
= CYPF* (14 FE*) 1T 1/2y,

where the second equality follows from (2.2). Therefore, using Lemma 3.1
and (2.1),

*:C(l)/2(1—|— F*F)~ Lprp—1/2y
= G2 1+ H) T2y
=Cy/? (I+H) LCy/ PR 1y
=CF'Tly. O
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