

The posterior mean and covariance operator in linear Gaussian inverse problems

Alen Alexanderian*

Abstract

We consider two different representations of the mean and posterior covariance operator in infinite-dimensional linear Gaussian inverse problems. The results considered here are known. The goal is to provide some clear and self-contained derivations.

1 Introduction

Let \mathcal{M} be an infinite-dimensional real separable Hilbert space. Consider a Bayesian inverse problem of estimating $m \in \mathcal{M}$ using the observation model

$$y = Fm + \eta. \quad (1.1)$$

Here, $F : \mathcal{M} \rightarrow \mathbb{R}^d$ is a continuous linear transformation, and $\eta \in \mathbb{R}^d$ models observation error and is distributed according to $N(0, \Gamma)$, where $\Gamma \in \mathbb{R}^{d \times d}$ symmetric positive definite. We assume a Gaussian prior $N(0, C_0)$. The discussions that follow can be easily adapted to the case of a nonzero prior mean m_0 that is sufficiently regular.¹

We also define,

$$\tilde{H} := C_0^{1/2} F^* \Gamma^{-1} F C_0^{1/2}.$$

This is the prior-preconditioned data misfit Hessian. The present terminology is motivated from a variational perspective. Namely, \tilde{H} is a symmetrically preconditioned version of the data-misfit Hessian in the optimization problem characterizing the MAP point.²

In the present setup, it is known [2] that the posterior is a Gaussian measure $\mu_{\text{post}} = N(m^*, C)$, with

$$C = C_0 - C_0 F^* (F C_0 F^* + \Gamma)^{-1} F C_0 \quad (1.2)$$

$$m^* = C_0 F^* (\Gamma + F C_0 F^*)^{-1} y. \quad (1.3)$$

In what follows, we seek to justify the alternative formulas for m^* and C . Specifically, we seek to prove the following results:

Theorem 1.1. *The following holds*

$$C = C_0^{1/2} (I + \tilde{H})^{-1} C_0^{1/2}. \quad (1.4)$$

Theorem 1.2. *The map point satisfies*

$$m^* = C F^* \Gamma^{-1} y. \quad (1.5)$$

*North Carolina State University, Raleigh, NC, USA. E-mail alexanderian@ncsu.edu
Last revised: December 8, 2025

¹ More precisely, m_0 must belong to the Cameron-Martin space, which is defined as $\mathcal{E} := \text{Range}(C_0^{1/2})$.

² Recall that in linear Gaussian inverse problems the MAP point and the posterior mean coincide.

Note that the covariance operator on the left-hand side of (1.4) is the well-known ‘‘Woodbury form’’ of the posterior covariance operator, which avoids explicitly inverting C_0 . The operator on the right-hand side also avoids C_0^{-1} and is convenient for computations. In particular, this form facilitates using a low-rank spectral decomposition of \tilde{H} for fast computations, a structure that commonly arises in ill-posed inverse problems [1]

2 The covariance expression

We first prove some technical lemmas. These lemmas are not meant to be general and concern only the specific problem under study.

Lemma 2.1. *Let $G : \mathcal{M} \rightarrow \mathbb{R}^d$ be a bounded linear operator. Then $I + G^*G$ and $I + GG^*$ are bounded linear operators that have a bounded inverse.*

Proof. Note that $K = G^*G$ is a positive selfadjoint compact operator and $I + K$ is injective. Hence, by the Fredholm alternative, $I + K$ has a bounded inverse. An analogous argument shows that $I + GG^*$ has a bounded inverse as well. \square

Lemma 2.2. *Let $G : \mathcal{M} \rightarrow \mathbb{R}^d$ be bounded linear operator. The following holds.*

$$I - G^*(I + GG^*)^{-1}G = (I + G^*G)^{-1}.$$

Proof. The result follows from a direct calculation:

$$\begin{aligned} (I + G^*G)(I - G^*(I + GG^*)^{-1}G) &= I - G^*(I + GG^*)^{-1}G + G^*G - G^*G G^*(I + GG^*)^{-1}G \\ &= I + G^*G - G^*(I + GG^*)^{-1}G - G^*(GG^*)(I + GG^*)^{-1}G \\ &= I + G^*G - G^*((I + GG^*)^{-1}G + (GG^*)(I + GG^*)^{-1}G) \\ &= I + G^*G - G^*[(I + GG^*)(I + GG^*)^{-1}]G \\ &= I + G^*G - G^*G \\ &= I. \end{aligned}$$

\square

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let the operator \tilde{F} be defined by $\tilde{F} := \Gamma^{-1/2}FC_0^{1/2}$. Note that \tilde{F} is a finite-dimensional operator. Furthermore, the following are straightforward to note

$$\tilde{F}^*\tilde{F} = \tilde{H} \tag{2.1}$$

$$\Gamma^{1/2}(I + \tilde{F}\tilde{F}^*)\Gamma^{1/2} = FC_0F^* + \Gamma. \tag{2.2}$$

Subsequently,

$$\begin{aligned} C &= C_0 - C_0F^*(FC_0F^* + \Gamma)^{-1}FC_0 \\ &= C_0 - C_0F^*(\Gamma^{1/2}(I + \tilde{F}\tilde{F}^*)\Gamma^{1/2})^{-1}FC_0 && \text{by (2.2)} \\ &= C_0 - C_0F^*\Gamma^{-1/2}(I + \tilde{F}\tilde{F}^*)^{-1}\Gamma^{-1/2}FC_0 \\ &= C_0^{1/2} \left[I - C_0^{1/2}F^*\Gamma^{-1/2}(I + \tilde{F}\tilde{F}^*)^{-1}\Gamma^{-1/2}FC_0^{1/2} \right] C_0^{1/2} \\ &= C_0^{1/2} \left[I - \tilde{F}^*(I + \tilde{F}\tilde{F}^*)^{-1}\tilde{F} \right] C_0^{1/2} \\ &= C_0^{1/2}(I + \tilde{F}^*\tilde{F})^{-1}C_0^{1/2} && \text{by Lemma 2.2} \\ &= C_0^{1/2}(I + \tilde{H})^{-1}C_0^{1/2}. && \text{by (2.1)} \quad \square \end{aligned}$$

3 The m^* expression

We first record the following technical lemma.

Lemma 3.1. *Let $G : \mathcal{M} \rightarrow \mathbb{R}^d$ be a bounded linear operator. Then $(I + G^*G)^{-1}G^* = G^*(I + GG^*)^{-1}$.*

Proof. By Lemma 2.1, both $I + G^*G$ and $I + GG^*$ are bounded operators that admit bounded inverses. Next, note that $(I + G^*G)G^* = G^*(I + GG^*)$. Right-multiplying this equation by $(I + GG^*)^{-1}$ and then left-multiplying the resulting equation by $(I + G^*G)^{-1}$ yields the desired identity. \square

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. As in the proof of Theorem 1.1, we define the operator $\tilde{F} := \Gamma^{-1/2}FC_0^{1/2}$. Consider the expression (1.3) for m^* . We have

$$\begin{aligned} m^* &= C_0F^*(\Gamma + FC_0F^*)^{-1}y \\ &= C_0F^*\Gamma^{-1/2}(I + \tilde{F}\tilde{F}^*)^{-1}\Gamma^{-1/2}y \\ &= C_0^{1/2}\tilde{F}^*(I + \tilde{F}\tilde{F}^*)^{-1}\Gamma^{-1/2}y, \end{aligned}$$

where the second equality follows from (2.2). Therefore, using Lemma 3.1 and (2.1),

$$\begin{aligned} m^* &= C_0^{1/2}(I + \tilde{F}^*\tilde{F})^{-1}\tilde{F}^*\Gamma^{-1/2}y \\ &= C_0^{1/2}(I + \tilde{H})^{-1}\tilde{F}^*\Gamma^{-1/2}y \\ &= C_0^{1/2}(I + \tilde{H})^{-1}C_0^{1/2}F^*\Gamma^{-1}y \\ &= CF^*\Gamma^{-1}y. \quad \square \end{aligned}$$

References

- [1] Tan Bui-Thanh, Omar Ghattas, James Martin, and Georg Stadler. A computational framework for infinite-dimensional Bayesian inverse problems Part I: The linearized case, with application to global seismic inversion. *SIAM Journal on Scientific Computing*, 35(6):A2494–A2523, 2013.
- [2] Andrew M. Stuart. Inverse problems: A Bayesian perspective. *Acta Numerica*, 19:451–559, 2010.