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Abstract

We review some key results regarding Gaussian quadrature.

1 A key result

Let In(f) be an n-point quadrature formula

In(f) =

n∑
j=1

wjf(xj),

where xj are quadrature nodes, and wj are quadrature weights. The rule In(f) is used

to approximate I(f) =
∫ b

a
f(x)w(x) dx, where w ≥ 0 is a weight function. We denote bt

En(f) = I(f) − In(f) the quadrature error. The following result from [1] reveals some
connections between quadrature and ideas from approximation theory. The argument
presented here follows in similar lines as that in [1].

Theorem 1.1. Let In(f) =
∑n

j=1 wjf(xj) be an n-point quadrature formula for approxi-

mating I(f) =
∫ b

a
f(x)w(x) dx, where w ≥ 0 is a weight function. Define,

γn(x) =

n∏
k=1

(x− xk).

Given 0 ≤ k ≤ n, we have

En(p) = 0, ∀p ∈ Pn−1+k, (1.1)

if and only if the following hold:

(a) In is interpolatory.

(b)
∫ b

a
γn(x)p(x)w(x) dx = 0, ∀p ∈ Pk−1.

Proof. Suppose (1.1) holds. This immediately implies (a). To see (b), notice that for
p ∈ Pk−1, γnp ∈ Pn−1+k. Therefore, by (1.1), En(γnp) = 0. Hence,∫ b

a

γn(x)p(x)w(x) dx =

n∑
j=1

wjγn(xj)p(xj) = 0,

where we use the fact that γn(xj) = 0, for j = 1, . . . , n.
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Conversely, suppose (a) and (b) hold. To show this implies (1.1), we proceed as fol-
lows. Let p ∈ Pn−1+k, and divide p by γn:

p(x) = q(x)γn(x) + r(x), x ∈ [a, b],

where q ∈ Pk−1 is the quotient and r ∈ Pn−1 is the remainder. We note,∫ b

a

p(x)w(x) dx =

∫ b

a

q(x)γn(x)w(x) dx+

∫ b

a

r(x)w(x) dx.

Now, since q ∈ Pk−1, the first term vanishes by (b). That is,∫ b

a

p(x)w(x) dx =

∫ b

a

r(x)w(x) dx. (1.2)

Next, note that since r ∈ Pn−1, (a) implies∫ b

a

r(x)w(x) dx =

n∑
j=1

wjr(xj) =

n∑
j=1

wj(p(xj)− q(xj)γn(xj)) =

n∑
j=1

wjp(xj), (1.3)

where we again used γn(xj) = 0 for j = 1, . . . , n. Combining (1.2) and (1.3), we get∫ b

a

p(x)w(x) dx =

n∑
j=1

wjp(xj).

That is, En(p) = 0. Since p ∈ Pn−1+k was arbitrary, this finishes the proof.

Remark 1.2. We make the following comments:

1. In the above theorem k = n is optimal and leads to a quadrature formula with
optimal degree of exactness 2n−1. This is the n-point Gaussian quadrature formula
corresponding to the weight function w.

2. Observe that by (b) in the theorem, and with k = n,

(γn, p)w = 0, ∀p ∈ Pn−1, (1.4)

where (·, ·)w is (weighted) L2
w inner product:

(f, g)w =

∫ b

a

f(x)g(x)w(x) dx, f, g ∈ L2
w[a, b].

That is, (1.4) says γn, which is an nth degree monic polynomial, is orthogonal to
every p ∈ Pn−1. Therefore, γn = πn with πn the degree n (monic) orthogonal poly-
nomial with respect to (·, ·)w. This also shows that the nodes of the n-point Gaussian
quadrature formula, with the weight function w, are the roots of the degree n or-
thogonal polynomial πn.

2 Convergence of Gaussian quadrature

The discussion here is focused on proving convergence of a Gaussian quadrature for-
mula on a closed and bounded interval. First we record the following important result [1].

Lemma 2.1. The weights of a Gaussian quadrature formula are positive.
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Proof. Let In(f) =
∑n

j=1 wjf(xj), be an n-point Gaussian quadrature formula for approx-

imating I(f) =
∫ b

a
f(x)w(x) dx. Let `i be the ith elementary Lagrange polynomial,

`i(x) =

n∏
k=1
k 6=i

x− xk
xi − xk

.

Note that `i ∈ Pn−1 and so `2i ∈ P2n−2. Therefore, since In has degree of exactness
2n− 1, we have

0 <

∫ b

a

`i(x)
2w(x) dx =

n∑
j=1

wj`i(xj)
2 = wi, i = 1, . . . , n.

Consider a closed and bounded interval [a, b]. Recall that for a given f ∈ C[a, b],
there exists a unique polynomial q∗n of degree ≤ n, for which ρn(f) = ‖f − q∗n‖∞, where
ρn(f) = infq∈Pn

‖f − q‖∞ is the minimax error. We record the following basic fact:

Lemma 2.2. Let [a, b] be a closed and bounded interval. For f ∈ C[a, b], ρn(f) → 0, as
n→∞.

Proof. This follows easily from Weierstrass Approximation Theorem.

The following is an important result for Gaussian quadrature formulas. The proof
presented below is a standard argument.

Theorem 2.3. Let [a, b] be a closed and bounded interval. Let I(f) =
∫ b

a
f(x)w(x) dx

where w ≥ 0 is a weight function, and let In(f) =
∑n

j=1 wjf(xj) be an n-point Gaussian
quadrature formula corresponding to the weight function w. Then, the following hold:

(a) The error En(f) = I(f)− In(f) satisfies

|En(f)| ≤ 2ρ2n−1(f)

∫ b

a

w(x) dx, ∀f ∈ C[a, b].

(b) limn→∞ In(f) = I(f), for all f ∈ C[a, b].

Proof. Let f ∈ C[a, b], and let p∗2n−1 be its minimax approximation in P2n−1. We know that
In(p

∗
2n−1) = I(p∗2n−1). Note that,

|En(f)| = |I(f)− In(p∗2n−1) + In(p
∗
2n−1)− In(f)|

≤ |I(f)− I(p∗2n−1)|+ |In(p∗2n−1)− In(f)|

≤
∫ b

a

|f(x)− p∗2n−1(x)|w(x) dx+

n∑
j=1

wj |p∗2n−1(xj)− f(xj)| (recall wj > 0 by Lemma 2.1)

≤ ρ2n−1(f)
∫ b

a

w(x) dx+

 n∑
j=1

wj

 ρ2n−1(f) = 2ρ2n−1(f)

∫ b

a

w(x) dx,

where we also used
∑n

j=1 wj =
∫ b

a
w(x) dx. This establishes statement (a) of the theorem.

The statement (b) follows from (a) and Lemma 2.2.

Remark 2.4. The above result shows an interesting property of Gaussian quadrature.
Note that the speed at which ρn(f) converges to zero increases with the smoothness of
the f ; see e.g., [2, Section 4.6–4.7]. The above theorem shows that Gaussian quadrature
formulas inherit this property. That is, Gaussian quadrature takes advantage of additional
smoothness in the integrand. This is in contrast to most composite rules.
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