Dependence of simple eigenpairs to differentiable perturbations

Alen Alexanderian*

Abstract

Let $\mathbf{A} : \mathbb{R}^n \to \mathbb{R}^{n \times n}$ be a differentiable matrix valued function. Suppose $\mathbf{A}(\mathbf{0})$ has a real simple eigenvalue λ_0 . We show here that for $\boldsymbol{\xi}$ sufficiently close to the origin, $\mathbf{A}(\boldsymbol{\xi})$ has a real eigenvalue $\lambda(\boldsymbol{\xi})$, and that $\lambda(\boldsymbol{\xi})$ depends differentiably on $\boldsymbol{\xi}$. A related result regarding the eigenvectors is also reviewed.

1 Introduction

Consider a matrix valued function $\mathbf{A} : \mathbb{R}^n \to \mathbb{R}^{n \times n}$, $\mathbf{A} = \mathbf{A}(\boldsymbol{\xi})$ with $\boldsymbol{\xi} \in \mathbb{R}^n$. Here we show that if $\mathbf{A}(\mathbf{0})$ has a *real simple* eigenvalue λ_0 and that \mathbf{A} depends differentiably on $\boldsymbol{\xi}$, then there exists a neighborhood $U \subset \mathbb{R}^n$ of $\boldsymbol{\xi} = \mathbf{0}$, such that for each $\boldsymbol{\xi} \in U$, $\mathbf{A}(\boldsymbol{\xi})$ has a *real* eigenvalue $\lambda(\boldsymbol{\xi})$ which depends differentiably on $\boldsymbol{\xi}$. This result is not new; the idea of the proof presented here is mainly based on a result in [1] with a slight modification of considering \mathbb{R} as the base field. Moreover, under the same assumption, it can be shown that we have an eigenvector $\boldsymbol{v}(\boldsymbol{\xi}) \in \mathbb{R}^n$ for each $\boldsymbol{\xi} \in U$ corresponding to $\lambda(\boldsymbol{\xi})$, and \boldsymbol{v} depends differentiably on $\boldsymbol{\xi}$ in U.

In what follows, we need the following special case of the Implicit Function $\ensuremath{\mathsf{Theorem}}\xspace{1}^1$

¹ See, e.g. [3, 2].

Theorem 1.1. Let $D \subset \mathbb{R}^n \times \mathbb{R}$ be an open set and $F : D \to \mathbb{R}$ a C^1 function. Assume that $(\mathbf{x}_0, y_0) \in D$ is such that

$$F(\boldsymbol{x}_0,y_0)=0, \quad \text{and} \quad \left. \frac{\partial}{\partial y} F(\boldsymbol{x}_0,y) \right|_{y=y_0}
eq 0.$$

Then, there exists an open set $U \subset \mathbb{R}^n$ containing x_0 and an open set $V \subset \mathbb{R}$ containing y_0 with $U \times V \subset D$, and a unique C^1 function $h : U \to V$ such that,

 $h(\boldsymbol{x}_0) = y_0$ and $F(\boldsymbol{x}, h(\boldsymbol{x})) = 0$, for all $\boldsymbol{x} \in U$.

2 Differentiability of simple eigenpairs

First, we consider a key result regarding differentiability of sample eigenvalues. The idea behind the proof of the theorem below is from [1]. However, here, we restrict the base field to real numbers and consider real eigenvalues.

Theorem 2.1. Let $\mathbf{A} : \mathbb{R}^n \to \mathbb{R}^{n \times n}$ be a differentiable matrix valued function. Suppose $\mathbf{A}(\mathbf{0})$ has a real simple eigenvalue λ_0 . Then, there exists a neighborhood $U \subset \mathbb{R}^n$ of the origin, such that for each $\boldsymbol{\xi} \in U$, $\mathbf{A}(\boldsymbol{\xi})$ has a real eigenvalue $\lambda(\boldsymbol{\xi})$. Moreover, $\lambda(\boldsymbol{\xi})$ depends differentiably on $\boldsymbol{\xi}$, and $\lambda(\mathbf{0}) = \lambda_0$.

^{*}North Carolina State University, Raleigh, NC, USA. E-mail: alexanderian@ncsu.edu Last revised: October 24, 2024.

Proof. Consider the function $p: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ given by,

$$p(\boldsymbol{\xi}, y) = \det(\mathbf{A}(\boldsymbol{\xi}) - y\mathbf{I}).$$

Note that by the assumptions on λ_0 , we have $p(\mathbf{0}, \lambda_0) = 0$. Moreover, we note that $p(\mathbf{0}, y) = (y - \lambda_0)r(y)$, with r(y) a polynomial of degree n - 1. Since λ_0 is a simple eigenvalue, i.e. a simple root of $p(\mathbf{0}, y)$, it follows that $\frac{\partial}{\partial y}p(\mathbf{0}, y) \mid_{y=\lambda_0} = r(\lambda_0) \neq 0$. Hence, we have

$$p(\mathbf{0},\lambda_0)=0 \quad ext{and} \quad rac{\partial p}{\partial y}(\mathbf{0},y)ig|_{y=\lambda_0}
eq 0.$$

Therefore, by the Implicit Function Theorem, there exists a neighborhood $U \subset \mathbb{R}^n$ of $\mathbf{0}$, a neighborhood $V \subset \mathbb{R}$ of λ_0 , and a C^1 function $\lambda : U \to V$ such that $\lambda(\mathbf{0}) = \lambda_0$ and $p(\boldsymbol{\xi}, \lambda(\boldsymbol{\xi})) = 0$ for every $\boldsymbol{\xi} \in U$. That is

$$\det(\mathbf{A}(\boldsymbol{\xi}) - \lambda(\boldsymbol{\xi})\mathbf{I}) = 0, \quad \text{for all } \boldsymbol{\xi} \in U,$$

so that $\lambda(\boldsymbol{\xi})$ is an eigenvalue of $\mathbf{A}(\boldsymbol{\xi})$ with $\lambda(\boldsymbol{\xi}) \in V \subset \mathbb{R}$.

The following result is a consequence of Theorem 8 in [1, p. 102]:

Theorem 2.2. Let $\mathbf{A} : \mathbb{R}^n \to \mathbb{R}^{n \times n}$ be a differentiable matrix valued function. Suppose $\mathbf{A}(\mathbf{0})$ has a real simple eigenvalue λ_0 . Then, for $\boldsymbol{\xi}$ in a neighborhood of the origin, we can choose an eigenvector $\boldsymbol{v}(\boldsymbol{\xi}) \in \mathbb{R}^n$ of $\mathbf{A}(\boldsymbol{\xi})$ corresponding to $\lambda(\boldsymbol{\xi})$, with $\lambda(\boldsymbol{\xi}) \in \mathbb{R}$ as in Theorem 2.1, to depend differentiably on $\boldsymbol{\xi}$.

In numerical computations, when using an eigensolver for computing eigenvalues and eigenvectors of $\mathbf{A}(\boldsymbol{\xi})$ for a sequence $\{\boldsymbol{\xi}_n\}$, in a neighborhood of 0, with $\boldsymbol{\xi}_n \to \mathbf{0}$, the sign of the computed eigenvectors might flip between with different choice of n. Aligning the eigenvectors might become necessary for numerical tests.² This can be done easily if for each $\boldsymbol{\xi}$, we compute a unit eigenvector $v(\boldsymbol{\xi})$, corresponding to $\lambda(\boldsymbol{\xi})$, and replace $v(\boldsymbol{\xi})$ by $\tilde{v}(\boldsymbol{\xi}) = \operatorname{sign}(v(\mathbf{0})^{\top}v(\boldsymbol{\xi}))v(\boldsymbol{\xi})$. We call this the *positively oriented* eigenvector corresponding to $\lambda(\boldsymbol{\xi})$, motivated by the fact that $v(0)^{\top}\tilde{v}(\boldsymbol{\xi}) > 0$. This is the case as long as $v(\boldsymbol{\xi})$ does not become perpendicular to $v(\mathbf{0})$.

² This is needed, for example, if one aims to examine the change in the eigenvector $v(\boldsymbol{\xi})$ for small perturbations of $\boldsymbol{\xi}$.

References

- [1] Peter D. Lax. Linear Algebra. Wiley-Interscience, 1996.
- [2] Jerrold E. Marsden and Michael J. Hoffman. *Elementary classical analysis*. W.H. Freeman and Company, 2nd edition, 1993.
- [3] Walter Rudin. *Principles of Mathematical Analysis*. McGraw-Hill Book Company, 2nd edition, 1964.