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Abstract

We use a Lagrange multiplier approach to derive formulas for eigenvalue
sensitivities for a class of implicitly defined matrices. The present study is
motivated by eigenvalue sensitivity analysis for the data misfit Hessian in
infinite-dimensional linear inverse problems. The derivations are meant to
provide the readers some insight before transitioning to the more involved
infinite-dimensional setting. We also provide a simple numerical example.

1 Introduction

We consider an implicitly defined matrix H ∈ RN×N whose action on a vector
v is defined as follows:

Hv ··= C>p, (1.1a)

where

Au+ Cv = 0, (1.1b)

A>p+ Q>Qu = 0. (1.1c)

Here, A ∈ RM×M is nonsingular, C ∈ RM×N , and Q ∈ RD×M . The motivation to
study this specific form of operator H comes from inverse problems. Namely, in
a linear inverse problem the data misfit Hessian admits such a representation.1 1 This also describes the

form of the Gauss–Newton
Hessian in nonlinear in-
verse problems.

Note that we can collapse the above definition of H to show

H = C>A−>Q>QA−1C. (1.2)

Clearly, H is a symmetric positive semidefinite matrix. In large-scale problems,
building this matrix is computationally prohibitive. Therefore, matrix free ap-
proaches that only the action of H to vectors are needed. This is facilitated
by (1.1), which provides an efficient approach for computing matrix-vector prod-
ucts with H. Namely, Hv can be computed at the cost of two linear solves.

Suppose A is parameterized by a parameter vector θ ∈ Rp. We assume A(θ)

is non-singular for every θ.2 Suppose further that A is a differentiable function 2 In practice, the parame-
ter vector θ may take val-
ues in a set of admissible
parameter vectors.

of a parameter vector θ. We seek to compute the partial derivatives of the eigen-
values of H = H(θ) with respect to the components of θ. Specifically, let λ be
a simple eigenvalue of H with a corresponding eigenvector v.3 We can describe

3 We consider simple
eigenvalues to ensure their
differentiability; see [3,
Page 130].

the relation Hv = λv as follows,

A(θ)u+ Cv = 0, (1.3a)

A(θ)>p+ Q>Qu = 0, (1.3b)

C>p = λv. (1.3c)

Below, we describe the process of computing the partial derivatives of λ = λ(θ).
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2 Derivation

Assuming v has unit norm, we have λ = v>Hv. We can thus define the map-
ping θ 7→ λ(θ) implicitly as follows,

λ(θ) = v>C>p, (2.1a)

where

A(θ)u+ Cv = 0, (2.1b)

A(θ)>p+ Q>Qu = 0, (2.1c)

v>v = 1. (2.1d)

Note that we have also added the requirement that v be of unit norm.

We next use a Lagrange multiplier approach to compute the adjoint-based
expressions for the partial derivatives of λ(θ).4 Consider the Lagrangian 4 For an overview of adjoint

based gradient computa-
tion, see the review [5].

L =
〈
v,C>p

〉
+ 〈p?,A(θ)u+ Cv〉+

〈
u?,A(θ)>p−Q>Qu

〉
+ λ?

(
1− v>v

)
. (2.2)

Note that L = L(u,p,v,u?,p?, λ?). The arguments of L in (2.2) are suppressed
for notational convenience. Also, here 〈·, ·〉 denotes the Euclidean inner product.

The derivative of λ(θ) with respect to θj are given by Lθj , where the variations
of L with respect to all other variables are set to zero. Setting the variations of
L with respect to p?, u?, and λ? equal to zero recovers equations (2.1b)–(2.1d).
Moreover, we have

Lu = A>p? + Q>Qu?, (2.3a)

Lp = Au? + Cv, (2.3b)

Letting these variations vanish, we obtain equations for u? and p?, which are
identical to the equations for u and p. Therefore, we have that u? = u and
p? = p. Finally, we note,

Lθj = 〈p?, [∂jA]u〉+
〈
u?, [∂jA]>p

〉
= 〈p, [∂jA]u〉+

〈
u, [∂jA]>p

〉
= 2 〈p, [∂jA]u〉 ,

where ∂j is used a shorthand for ∂
∂θj

. Therefore, to compute the sensitivity of λ
with respect to θj , we need to perform the following calculations:

• solve (2.1b) for u;
• solve (2.1c) for p; and
• evaluate eigenvalue sensitivities

∂jλ(θ) = 2 〈p, [∂jA]u〉 , j ∈ {1, . . . , p}. (2.4)

3 Remarks

Note that it is possible to compute the eigenvalue sensitivities for H directly
using the definition (1.2) and the well-known formula for eigenvalue sensitivities
of symmetric matrices with simple eigenvalues [4], given by

∂jλ = 〈v, [∂jH]v〉 , j ∈ {1, . . . , n}.

The derivation in the previous section has the advantage that (i) it is self-contained
for the present class of problems; (ii) it is matrix-free by construction; and (iii) it
guides eigenvalue sensitivity analysis for infinite-dimensional inverse problems
governed by PDEs. This also facilitates derivation of adjoint-based expressions
for eigenvalue sensitivities in the cases of nonlinear inverse problems. In the
infinite-dimensional setting, the equations (2.1b)–(2.1c) will be replaced by the
weak forms of the so-called incremental state and adjoint equations. Such cal-
culations can be found in [2] for the case of linear inverse problems and [1] for
nonlinear inverse problems. The present derivation also facilitates eigenvalue
sensitivity analysis in cases where it is otherwise unclear how one would form
the action of ∂jH.
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4 Numerical example

To numerically illustrate the approach discussed in the previous section, we
consider a simple example.5 Namely, we let 5 For a more interest-

ing example, involving a
large-scale inverse prob-
lem, see [2].A =

−20(1 + a2θ2) 3(1 + a3θ3) 0

1 + a1θ1 −20(1 + a2θ2) 3(1 + a3θ3)

0 1 + a1θ1 −20(1 + a2θ2)

 and a =

0.08

0.06

0.09

 .
Also, the remaining matrices for the present example are as follows:

Q =

[
1 −1 1

−1 1 1

]
and C =

1 2

3 4

5 6

 .
In this case, the matrix H is a 2 × 2 matrix. We consider the sensitivity of
the largest eigenvalue, denoted generically by λ, to the components of θ =[
θ1 θ2 θ3

]>
, at the nominal parameter vector θ̄ = [0.1 0.2 0.3]>. In Figure 1,

we report the difference between the finite-difference approximation ∂hj λ and
the (exact) derivative ∂jλ computed using (2.4). The finite-difference is com-
puted using a forward difference formula.

Figure 1: Finite difference check for the formula (2.4).
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