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Abstract

We use a Lagrange multiplier approach to derive formulas for eigenvalue
sensitivities for a class of implicitly defined matrices. The present study is
motivated by eigenvalue sensitivity analysis for the data misfit Hessian in
infinite-dimensional linear inverse problems. The derivations are meant to
provide the readers some insight before transitioning to the more involved
infinite-dimensional setting. We also provide a simple numerical example.

1 Introduction

We consider an implicitly defined matrix H € RV*" whose action on a vector
v is defined as follows:

Hv := C'p, (1.1a)
where

Au+Cv =0, (1.1b)

ATp+Q'Qu=o0. (1.1c)

Here, A € RM*M is nonsingular, C € RM*Y, and Q € R”*M, The motivation to
study this specific form of operator H comes from inverse problems. Namely, in
a linear inverse problem the data misfit Hessian admits such a representation.!
Note that we can collapse the above definition of H to show

H=C A 'Q'QA!C. (1.2)

Clearly, H is a symmetric positive semidefinite matrix. In large-scale problems,
building this matrix is computationally prohibitive. Therefore, matrix free ap-
proaches that only the action of H to vectors are needed. This is facilitated
by (1.1), which provides an efficient approach for computing matrix-vector prod-
ucts with H. Namely, Hv can be computed at the cost of two linear solves.

Suppose A is parameterized by a parameter vector 8 € RP. We assume A(0)
is non-singular for every 6.2 Suppose further that A is a differentiable function
of a parameter vector 8. We seek to compute the partial derivatives of the eigen-
values of H = H(6@) with respect to the components of 8. Specifically, let A be
a simple eigenvalue of H with a corresponding eigenvector v.> We can describe
the relation Hv = A\v as follows,

A(@)u + Cv =0, (1.3a)
A()'p+Q Qu=0, (1.3b)
C'p=)v. (1.3c)

Below, we describe the process of computing the partial derivatives of A = A\(6).
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L' This also describes the
form of the Gauss-Newton
Hessian in nonlinear in-
verse problems.

2 In practice, the parame-
ter vector @ may take val-
ues in a set of admissible
parameter vectors.

3  We consider simple
eigenvalues to ensure their
differentiability; see [3,
Page 130].
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2 Derivation

Assuming v has unit norm, we have A = v Hv. We can thus define the map-
ping 6 — A\(0) implicitly as follows,

@) =v"C'p, (2.1a)
where

AB)u+Cv =0, (2.1b)

A0)'p+Q Qu=0, (2.1c)

viv=1. (2.1d)

Note that we have also added the requirement that v be of unit norm.

We next use a Lagrange multiplier approach to compute the adjoint-based
expressions for the partial derivatives of \(8).* Consider the Lagrangian

L= (v, CTp> + (p*, A(@)u + Cv) + <u*7A(0)Tp - QTQu> + A" (1 - vTv). (2.2)

Note that £ = L(u,p,v,u*,p*, \*). The arguments of £ in (2.2) are suppressed
for notational convenience. Also, here (-, -) denotes the Euclidean inner product.

The derivative of \(@) with respect to §; are given by Ly,, where the variations
of £ with respect to all other variables are set to zero. Setting the variations of
L with respect to p*, u*, and \* equal to zero recovers equations (2.1b)-(2.1d).
Moreover, we have

L.=A"p"+Q Qu*, (2.3a)
Ly, =Au* + Co, (2.3b)

Letting these variations vanish, we obtain equations for «* and p*, which are
identical to the equations for w and p. Therefore, we have that v* = uw and
p* = p. Finally, we note,

Lo, = (", [0,A]u) + (", [9,A]'p) = {p. [0,Alu) + (u.[0,A] p) = 2 (p. [0, A]u)

where 0; is used a shorthand for %. Therefore, to compute the sensitivity of A
J
with respect to 6;, we need to perform the following calculations:

¢ solve (2.1Db) for u;
* solve (2.1c) for p; and
* evaluate eigenvalue sensitivities

N0) =2 (p,[;Alu), je{l,....p} (2.4)

3 Remarks

Note that it is possible to compute the eigenvalue sensitivities for H directly
using the definition (1.2) and the well-known formula for eigenvalue sensitivities
of symmetric matrices with simple eigenvalues [4], given by

;A= (v,[0;Hv), je{l,...,n}.

The derivation in the previous section has the advantage that (i) it is self-contained
for the present class of problems; (ii) it is matrix-free by construction; and (iii) it
guides eigenvalue sensitivity analysis for infinite-dimensional inverse problems
governed by PDEs. This also facilitates derivation of adjoint-based expressions
for eigenvalue sensitivities in the cases of nonlinear inverse problems. In the
infinite-dimensional setting, the equations (2.1b)—(2.1c) will be replaced by the
weak forms of the so-called incremental state and adjoint equations. Such cal-
culations can be found in [2] for the case of linear inverse problems and [1] for
nonlinear inverse problems. The present derivation also facilitates eigenvalue
sensitivity analysis in cases where it is otherwise unclear how one would form
the action of 9;H.

4 For an overview of adjoint
based gradient computa-
tion, see the review [5].
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4 Numerical example

To numerically illustrate the approach discussed in the previous section, we
consider a simple example.® Namely, we let

—20(1 + a292) 3(1 + a393) 0 0.08
A= 1+ CL191 —20(1 + azeg) 3(]. + CL393) and a = |0.06
0 1 + a101 *20(1 + 0@92) 0.09

Also, the remaining matrices for the present example are as follows:

12
Q:{ll ! ﬂ and C= |3 4
5 6

In this case, the matrix H is a 2 x 2 matrix. We consider the sensitivity of
the largest eigenvalue, denoted generically by A, to the components of 8 =
(61 6> 93]T, at the nominal parameter vector § = [0.1 0.2 0.3]". In Figure 1,
we report the difference between the finite-difference approximation 8;?)\ and
the (exact) derivative 0;\ computed using (2.4). The finite-difference is com-
puted using a forward difference formula.

S T
----|alx—aﬁ;x\ __________
1072 F 70102 — Bé/\\ _________
<oA= N | et -
e _-".‘-
_____ ,—‘.—
----- ,—'.-
N e .ot
10 L. _'_.-—" °
Lo @
o © -0
.-‘.‘-‘ o
. ,-".-— o o ©
100 g o e
o Lo
o Lo
o .o
o Lo
o __,_.—'
10—8 L o o ‘.____.‘
_-‘.‘-—
o-
107! 1072
h
Figure 1: Finite difference check for the formula (2.4).
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large-scale inverse prob-
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