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Abstract

We develop a simplified computational singular perturbation (CSP) analysis of a stochastic dynam-
ical system. We focus on the case of parametric uncertainty, and rely on Polynomial Chaos (PC)
representations to quantify its impact. We restrict our attention to a system that exhibits distinct
timescales, and that tends to a deterministic steady state irrespective of the random inputs. A
detailed analysis of eigenvalues and eigenvectors of the stochastic system Jacobian is conducted,
which provides a relationship between the PC representation of the stochastic Jacobian and the
Jacobian of the Galerkin form of the stochastic system. The analysis is then used to guide the
application of a simplified CSP formalism that is based on relating the slow and fast manifolds of
the uncertain system to those of a nominal deterministic system. Two approaches are specifically
developed with the resulting simplified CSP framework. The first uses the stochastic eigenvectors
of the uncertain system as CSP vectors, whereas the second uses the eigenvectors of the nominal
system as CSP vectors. Numerical experiments are conducted to demonstrate the results of the
stochastic eigenvalue and eigenvector analysis, and illustrate the effectiveness of the simplified CSP
algorithms in addressing the stiffness of the system dynamics.
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1 Introduction

Modeling complex dynamical systems often involves solving large systems of ordinary differential
equations (ODEs). In many cases, the time scales in such systems span several orders of magnitude,
and the mathematical models are thus deemed to be “stiff”. Stiffness is specifically associated
with the large range of amplitudes of the negative real system eigenvalues. Stability issues are
encountered when integrating such systems using explicit methods, where it is necessary that the
time step be limited to very small values. Alternatively, implicit methods can be used, allowing
larger time steps, but with larger per time-step cost, and complexity of the time integration method.
Therefore, it is generally useful to reduce stiffness of these systems to enable their efficient explicit
time integration and analysis of their dynamics.

Computational singular perturbation (CSP) [13, 21] has been found to be an effective tool
for analysis of stiff ODE systems, allowing model reduction and mitigating stiffness. CSP relies
on the identification of a set of vectors/co-vectors that provide suitable decoupling of fast and
slow processes. This allows the identification of fast exhausted modes, and the associated set of
algebraic constraints defining the slow invariant manifold (SIM) along which the solution evolves
according to the slow time scales. This information allows detailed and precise analysis of the
dynamics, providing cause-and-effect insights, and key information for model reduction. Given a
1/ǫ separation between fast and slow time scales, the eigenvectors of the ODE Jacobian matrix
provide an O(ǫ) approximation of the ideal CSP vectors. Higher-order constructions are available,
employing an iterative refinement procedure. In particular, the CSP methodology has been used
extensively for analysis and model reduction in ODEs resulting from chemical systems [8, 12–14,
18–22,28,29,38–41,43].

Heuristic methods for model reduction based on CSP analysis have been demonstrated in
strongly nonlinear dynamical systems, in particular chemical models of complex hydrocarbon fuels,
with significant degrees of stiffness. The methodology enables a choice among a range of reduced
models of varying complexity, depending on user-specified tolerances. However, these model re-
duction methods have not been extended to situations in which the starting, detailed, dynamical
model has some degree of uncertainty, whether in its structure or parameters/initial conditions.
This extension is highly relevant, as complex dynamical systems frequently involve uncertainty, and
it is intuitively clear that the degree of uncertainty in the detailed model and the meaningful degree
of model reduction are inter-related. There has been very little work in this area. We may cite
the work in [34] where POD model reduction methods were analyzed in the context of small and
linear perturbations to model parameters. To our knowledge, there is no work on model reduction
strategies for uncertain dynamical systems, allowing for large degrees of uncertainty and requiring
stochastic uncertainty quantification methods.

Uncertainty quantification (UQ) methods have been used in order to assess the effect of different
sources of uncertainty on dynamical system behavior. As the system size increases, the number of
sources of uncertainty often increases leading to a significant increase in computational complexity.
For example, the combustion of complex hydrocarbons may involve thousands of elementary reac-
tions whose kinetic parameters are poorly characterized. Accounting for uncertainty in all these
parameters is a signficant challenge, even presuming well characterized parametric uncertainties.
Global sensitivity analysis may be used to cut down the number of uncertain parameters of sig-
nificance, however this analysis in itself requires large computational effort and the residual UQ
problem remains a significant challenge.

Polynomial chaos (PC) spectral UQ methods [6, 11, 24–27, 35, 47, 48] have been introduced,
and used over the past two decades, for alleviating the computational cost of Monte Carlo UQ
methods, and to support uncertainty management and decision making analyses. PC methods
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have been extensively used for UQ in different physical problems such as fluid [25, 27, 31] and
solid [10, 11] mechanics, and chemical reactions [26, 32, 35]. The essential goal in PC methods is
to obtain a spectral representation of the variables of interest. This goal can be accomplished
using two approaches. This first approach relies on computing a set of deterministic solutions
for different realizations of the uncertain parameters then projecting these solutions on a spectral
basis in order to recover a unique spectral representation of the solution of interest. This approach
does not require the reformulation of the governing equations as it only requires the existence of a
deterministic model. Hence this approach is often called “non-intrusive spectral projection” (NISP).
In the second (intrusive) approach, known as the Galerkin method, the governing equations are
reformulated based on the PC expansions of the random parameters and the variables. This results
in an expanded system of differential equations that, once solved, yields a suitable representation
of the stochastic variables.

In this paper, we propose to develop a new methodology that combines CSP and spectral PC
uncertainty quantification methods for the analysis and reduction of multiscale problems under
uncertainty. Our goal is to simultaneously analyze the stochastic system and efficiently integrate
its dynamics. We focus our attention on an n-dimensional kinetic system, with uncertainty in
initial conditions and rate parameters, and assume that the uncertainty can be parameterized in
terms of a random input vector ξ ∈ R

M . The Galerkin formulation of such systems would result in
an expanded system of n(P + 1) differential equations (see Section 2.4.2), where P is the number
of terms in the PC expansion of the solution variables. An obvious approach is to apply CSP
directly to the Galerkin system. This would involve an analysis of the deterministic Jacobian of
the Galerkin system (cf. Section 3), which we denote by J . This determinstic Jacobian, J , should
be carefully distinguished from the Jacobian of the stochastic system, J(ξ), which we refer to as
the stochastic Jacobian. Clearly, J belongs to the space R

n(P+1)×n(P+1), whereas each realization
of the stochastic Jacobian, J , belongs to the space R

n×n.
While the application of CSP to the Galerkin reformulated system appears to be quite gen-

eral, the approach entails the following challenges: (i) the Galerkin Jacobian, J , may not be
R-diagonalizable even when it arises from the Galerkin projection of a stochastic problem with
an almost surely R-diagonalizable stochastic Jacobian (see [37] for notable exceptions in the con-
text of hyperbolic systems); and (ii) the Galerkin Jacobians commonly exhibit eigenvalues with
multiplicity greater than one, complicating the application of the CSP procedure.

To circumvent such difficulties, we explore the feasibility of applying a simplified CSP method-
ology. The approach is specifically motivated by the question of assessing: under what ranges of
uncertainties in the model parameters would a deterministic reduced model remain valid or useful?
Assuming that this is feasible makes a simplified CSP procedure based on a spectral analysis of the
stochastic Jacobian J(ξ) possible. In this paper, we shall specifically explore this possibility. Of
course, the approach is less general than the direct application of CSP to the Galerkin reformulated
system. However, it appears to provide tangible advantages, including: (a) the direct and efficient
characterization of the dependence of the physical fast and slow manifolds on the uncertainty term
ξ, (b) the potential of re-exploiting an available or legacy reduced model, originally obtained based
on analyzing a deterministic (nominal) system, and (c) a more efficient algorithm. We shall specif-
ically investigate the merits and properties of this simplified CSP approach in the context of a
model kinetic system.

The structure of this paper is as follows. In section 2, we collect the basic notation and the
background ideas used throughout the paper. The simplifed CSP algorithm hinges on stochastic
time scales and eigenvectors derived from the spectral analysis of J(ξ), which is outlined in section 3.
In section 4 we develop our proposed simplified CSP reduction mechanism for uncertain systems.
In section 5, we introduce a simple 3-species model problem and derive its stochastic Galerkin

4



form. Numerical studies are conducted in section 6 to test the accuracy and effectiveness of the
proposed method. Finally, in section 7 we provide a few concluding remarks and possible directions
for further work.

5



2 Background

In this section we fix the notation and collect background results used in the rest of the paper.

2.1 Basic notation

In what follows (Ω,F , µ) denotes a probability space, where Ω is the sample space, F is an appropri-
ate σ-algebra on Ω, and µ is a probability measure. A real-valued random variable ξ on (Ω,F , µ)
is an F/B(R)-measurable mapping ξ : (Ω,F , µ) → (R,B(R)), where B(R) denotes the Borel σ-
algebra on R. The space L2(Ω,F , µ) denotes the Hilbert space of real-valued square integrable
random variables on Ω. For a random variable ξ on Ω, we write ξ ∼ N (0, 1) to mean that ξ is a
standard normal random variable and we write ξ ∼ U(a, b) to mean that ξ is uniformly distributed
on the interval [a, b]. We use the term iid for a collection of random variables to mean that they
are independent and identically distributed. The distribution function [17,46] of a random variable
ξ on (Ω,F , µ) is given by Fξ(x) = µ(ξ ≤ x) for x ∈ R.

2.2 Uncertainty quantification and polynomial chaos

In this paper, we consider dynamical systems with finitely many random parameters, parameterized
by a finite collection of real-valued iid random variables ξ1, . . . , ξM on Ω. We let V = σ({ξi}

M
1 ) and,

disregarding any other sources of uncertainty, work in the space (Ω,V, µ). By Fξ we denote the
joint distribution function of the random vector ξ = (ξ1, . . . , ξM )T . Note that since the ξj are iid,

they share a common distribution function, F , and consequently Fξ(x) =
M∏

j=1

F (xj) for x ∈ R
M .

Let us denote by Ω∗ ⊆ R
M the image of Ω under ξ, Ω∗ = ξ(Ω), and by B(Ω∗) the Borel σ-algebra

on Ω∗.
It is often convenient to work in the probability space (Ω∗,B(Ω∗), Fξ) instead of the abstract

probability space (Ω,V, µ). We denote the expectation of a random variable X : Ω∗ → R by

〈X〉 =

∫

Ω∗

X(s) dFξ(s).

The space L2(Ω∗,B(Ω∗), Fξ), which we sometimes simply denote by L2(Ω∗), is endowed with the
inner product (·, ·) : L2(Ω∗) × L2(Ω∗) → R given by

(X, Y ) =

∫

Ω∗

X(s)Y (s) dFξ(s) = 〈XY 〉 .

In the case ξi
iid
∼ N (0, 1), any X ∈ L2(Ω∗,B(Ω∗), Fξ) admits an expansion of form,

X =
∞∑

k=0

ckΨk, (1)

where Ψk are M -variate Hermite polynomials [1], and the series converges in L2(Ω∗,B(Ω∗), Fξ)
sense:

lim
P→∞

∫

Ω∗

∣
∣
∣X(s) −

P∑

k=0

ckΨk(s)
∣
∣
∣

2
dFξ(s) = 0.
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The expansion (1) is known as the (Wiener-Hermite) polynomial chaos expansion [5, 16, 24, 45] of
X. The polynomials {Ψk}

∞
0 are orthogonal,

(Ψk, Ψl) = 〈ΨkΨl〉 = δkl

〈
Ψ2

k

〉
, (2)

where δkl is the Kronecker delta.
Depending on the distributions appearing in the problem it is convenient to adopt alternative

parameterizations and polynomial bases. For example, in the case ξi
iid
∼ U(−1, 1), we will use

M -variate Legendre polynomials for the basis {Ψk}
∞
0 , and the expansion in (1) is a Generalized

Polynomial Chaos [47] expansion of X. It is also possible to use ξi that are independent but
not necessarily identically distributed, which leads to a mixed polynomial chaos basis (cf. [24] for
examples).

Finally, in practical computations, we will be approximating X(ξ) with a truncated series,

X(ξ) ≈
P∑

k=0

ckΨk(ξ), (3)

where P is finite and depends on the truncation strategy adopted. In the following, we shall consider
truncations based on the total degree of the retained polynomials in the series, such that P is a
function of the stochastic dimension M and expansion “order” p according to [24]:

1 + P =
(M + p)!

M !p!
. (4)

Here p refers to the largest polynomial degree in the expansion.

2.3 The approximation space Vp

Let us denote by Vp, the subspace of L2(Ω∗) spanned by {Ψ0, Ψ1, . . . ,ΨP } with P given by (4).
Every element of Vp is a linear combination of {Ψj}

P
0 . Random variables in L2(Ω∗) will be approx-

imated by elements in Vp. The definition of the approximations in Vp of an element u ∈ L2(Ω∗)
will vary from one case to another; specifically, we shall rely on orthogonal projection of u into Vp

or on the Galerkin projection definition when the random variable u is solution of an equation (or
of a set of equations); see Section 2.4.2. The orthogonal projection allows us to define operations
between elements of Vp in a rather straightforward way. For example, given u, v ∈ Vp, we note that
the product (uv) is in general not in Vp, but can be projected into Vp easily as follows [24]. Given,

u =
P∑

k=0

ukΨk, v =
P∑

k=0

vkΨk,

the projection w of (uv) into Vp is

w =
P∑

k=0

wkΨk, wk =
1

〈
Ψ2

k

〉

P∑

i=0

P∑

j=0

uivj 〈ΨiΨjΨk〉 . (5)

The function w defined as in (5) is the product of u and v in Vp; we denote this Vp product by

w = u ⊛ v.
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In the current work, we are also interested in random n-vectors u with components ui ∈ Vp for
i = 1, . . . , n. In this case we write u ∈ (Vp)n. Any u ∈ (Vp)n has a spectral representation,

u =

P∑

k=0

ukΨk,

with uk ∈ R
n. We denote by [u] the n(P + 1)-dimensional vector

[u] =








u0

u1

...
uP








,

and view [u] as the vector of “coordinates” of u in (Vp)n. We can also define operations between
random n-vectors. For example, if v ∈ (Vp)n has a spectral representation,

v =

P∑

k=0

vkΨk,

then the dot product of u and v, α = u · v, can be projected into Vp easily as follows:

α =
P∑

k=0

αkΨk, αk =
1

〈
Ψ2

k

〉

P∑

i=0

P∑

j=0

ui · vj 〈ΨiΨjΨk〉 . (6)

We denote this dot product in (Vp)n by

α = u ⊙ v.

Finally, we can consider random n × n-matrices in (Vp)n×n. Given A ∈ (Vp)n×n and u ∈ (Vp)n we
denote the stochastic matrix-vector product in Vp of A and u by A ⊛ u with

(Vp)n ∋ (A ⊛ u) =
P∑

k=0

(A ⊛ u)kΨk, (A ⊛ u)k =
1

〈
Ψ2

k

〉

P∑

i=0

P∑

j=0

Aiuj 〈ΨiΨjΨk〉 .

2.4 Uncertain dynamical systems

Consider the deterministic autonomous ODE system,
{

ẏ = g(y),

y(0) = y0,
(7)

where the solution of the system is a function y : [0, Tfin] → R
n. We consider parametric uncer-

tainty in the source term g and the initial conditions, i.e. g = g(y, ξ), and y0 = y0(ξ). Thus, the
solution of (7) is a stochastic process,

y : [0, Tfin] × Ω∗ → R
n.

That is, one may view y as an indexed collection of random n-vectors, {y(t)}t∈[0,Tfin], where for
every t ∈ [0, Tfin], y(t) : Ω∗ → R

n is a random n-vector. We can rewrite (7) more precisely as
{

ẏ(t, ξ) = g
(
y(t, ξ), ξ

)

y(0, ξ) = y0(ξ).
a.s. (8)
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For any given ξ, the system has a deterministic trajectory {y(t)}t∈[0,Tfin].
For the purpose of the discussion and subsequent developments, it will be useful to introduce the

nominal system, which we define as a particular deterministic realization of the stochastic system
in (8) corresponding to a given value ξ = ξ̄ ∈ Ω∗. Although other choices for the nominal system
may be relevant, we shall restrict ourselves to the selection ξ̄ = 〈ξ〉.

We shall assume that y(t, ξ) ∈ L2(Ω∗) a.e. in [0, Tfin] (component-wise), so yi(t, ξ) at a given
time, can be approximated by a truncated PC expansion,

yi(t, ξ) =

P∑

k=0

yk
i (t)Ψk(ξ).

There are two classes of methods for computing the coefficients yk
i according to the definition

of the projection used, namely the orthogonal projection onto Vp or the Galerkin projection. The
orthogonal projection of y leads to the so-called non-intrusive methods which aim at computing
the PC coefficients via a set of deterministic evaluations of y(ξ) for specific realizations of ξ; the
Galerkin projection amounts to the resolution of an expanded system of ODEs resulting from the
insertion of the PC expansion of y in the dynamical system (8) which is interpreted in a weak
sense. In this paper, we primarily rely on the Galerkin projection, but will also rely on non-
intrusive spectral projection [24] (NISP) in a limited fashion (see Sections 2.4.1 and 2.4.2 below for
an overview of the NISP and the Galerkin method.)

2.4.1 Non Intrusive Spectral Projection

Let us focus on a generic component of the uncertain dynamical system (8) at a fixed time t ∈
[0, Tfin] and simply denote this generic component by y. The NISP method defines the expansion
coefficients ck in the expansion of y(ξ) as the coordinates of its orthogonal projection on the space
Vp spanned by the Ψk. The definition of orthogonal projection on Vp reads [2, 24,35]:

(

y −
P∑

l=0

clΨl, Ψk

)

= 0, k = 0, . . . , P.

Therefore, by orthogonality of {Ψ0, . . . ,ΨP },

(y, Ψk) =

(
P∑

l=0

clΨl, Ψk

)

=
P∑

l=0

cl (Ψl, Ψk) = ck (Ψk, Ψk) , (9)

so the coefficient ck is given by

ck =
〈yΨk〉
〈
Ψ2

k

〉 . (10)

In the case of Hermite or Legendre polynomials [1], the moments
〈
Ψ2

k

〉
in (10) can be computed

analytically, and the determination of coefficients ck amounts to the evaluation of the moments

〈yΨk〉 =

∫

Ω∗

y(s)Ψk(s) dFξ(s),

leading to the evaluation of P + 1 integrals over Ω∗ ⊆ R
M to obtain each coefficient. The NISP

method involves computation of the the above integrals via numerical integration. This can be
done using a variety of methods, including random sampling Monte Carlo, or quasi-monte carlo,
methods, as well as deterministic quadrature/sparse-quadrature methods [24]. In this work, owing
to the low stochastic dimensionality of the problems considered, we rely on fully-tensorized Gauss
quadrature for the evaluation of the integrals.
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2.4.2 The Galerkin method

Consider the uncertain dynamical system (8). We seek to approximate y(t, ξ) by finding an ex-

pansion of y(t, ·) in (Vp)n for t ∈ [0, Tfin], y(t, ξ) =
P∑

k=0

yk(t)Ψk(ξ), where yk(t) are the stochastic

modes of y(t). In components, we write

yi(t, ξ) =
P∑

k=0

yk
i (t)Ψk(ξ), i = 1, . . . , n.

Inserting the truncated PC expansion of y in the ODE system (8) we obtain,







d

dt

( P∑

k=0

ykΨk

)

= g
(

P∑

k=0

ykΨk, ξ
)

+ r(t, ξ),

P∑

k=0

yk(0)Ψk = y0(ξ) + r0(ξ),

(11)

where r and r0 are the residuals arising from the truncation. Then, the modes yk are defined such
that the corresponding residuals are orthogonal to Vp [24], that is

∀t ∈ [0, Tfin] (r(t, ·), Ψk) = 0, (r0, Ψk) = 0, 0 ≤ k ≤ P.

This leads to the following system of equations







ẏk =
1

〈
Ψ2

k

〉

〈

g
( ∑

k

ykΨk, ξ
)
Ψk

〉

yk(t = 0) =
〈y0(·)Ψk〉

〈
Ψ2

k

〉

, k = 0, . . . , P. (11′)

Setting [y] = (y0 · · ·yP )T , and similarly [g̃] for the stochastic modes of the right-hand-side, i.e.

g̃k([y]) =
〈g(y, ξ)Ψk〉

〈
Ψ2

k

〉 ,

the dynamical equation can be recast as

˙[y] = [g̃]([y]),

showing that the Galerkin projection leads to the resolution of a set of (P + 1) × n coupled deter-
ministic ODEs.

2.5 Some matrix theory concepts

Here we collect some basics from matrix theory [15, 23, 30]. A matrix S ∈ R
n×n is called R-

diagonalizable if it has real eigenvalues and a complete set of (real) eigenvectors; that is, the
eigenvectors of S form a basis of R

n. Usually, when talking about eigenvectors of S without no
qualifications, we refer to the right eigenvectors. In the current work, the left eigenvectors are of
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importance also; recall that a vector b ∈ R
n is a left eigenvector corresponding to an eigenvalue λ

of S if bT S = λbT .
In particular, we are interested in real n × n matrices with n-distinct real eigenvalues. Such

matrices are automatically R-diagonalizable. Let S be such a matrix, with distinct real eigenvalues
{λ1, . . . , λn} and right and left eigenvectors, {a1, . . . ,an} and {b1, . . . , bn}. Note that

λjb
T
j ai = bT

j Sai = bT
j (λiai) = λib

T
j ai,

so that (λi − λj)b
T
j ai = 0. Hence, bT

j ai = 0 for i 6= j. The left eigenvectors are usually normalized

so that bT
j ai = δij . We refer to the basis formed by the left eigenvectors as the dual basis of that

formed by the right eigenvectors. The right eigenvectors ai of S form a basis for R
n (as well as the

left eigenvectors bi), and thus given any x ∈ R
n, we have

x =
n∑

i=1

fiai. (12)

We can compute the coefficients fi via the dual basis through fi = bT
i x. This decomposition is

central in the CSP method for reduction of an ODE system, where we use the respective eigenvector
bases of the system Jacobian, and decompose the right-hand-side of the system. In the CSP context,
the coefficients fi in (12) are referred to as the mode amplitudes.

2.6 Overview of deterministic CSP

In this section, we briefly outline the essential elements of Computational Singular Perturbation
(CSP), particularly as used to tackle stiffness in (deterministic) chemical systems. As discussed
in [19, 21, 40, 42], the CSP integrator addresses stiffness of the system by projecting out the fast
time scales from the detailed chemical source term. This enables the use of explicit time integrators
with large time steps, resulting in computational speedup.

Consider a deterministic ODE system such as the one in (7). The time scales {τi}
n
1 of the

system are defined as the magnitudes of the reciprocals of the eigenvalues for the Jacobian matrix
J = ∇g ∈ R

n×n, τi = 1
|λi|

; we assume that there are n-distinct timescales ordered as follows:

τ1 < τ2 < · · · < τn.

Note that this implies that J has n distinct eigenvalues, we further assume that the eigenvalues of
J are real.

In the CSP context, we may write the system in (7) as follows:

ẏ = g(y) =
n∑

i=1

aifi, (13)

where, following [42], we let the CSP vectors ai and co-vectors bi to be the right and left eigenvectors
of J respectively. As noted, we have fi = bT

i g. The coefficient fi represents the amplitude of mode
i and as aifi becomes negligible, in the sense made precise below, the ith mode is classified as
“fast”. In the CSP parlance, a fast mode is “exhausted” if its amplitude is small as a result of near-
equilibration of opposed non-negligible processes, while it is “frozen” if it is composed of essentially
negligible processes. The distinction is obviously problem-specific, but both classes are generally
referred to as fast modes. Suppose the first m modes are fast; then, we have,

ẏ =
m∑

i=1

aifi

︸ ︷︷ ︸

gfast≈0

+
n∑

i=m+1

aifi

︸ ︷︷ ︸

gslow

≈
n∑

i=m+1

aifi = (I −
m∑

i=1

aib
T
i )

︸ ︷︷ ︸

P

g =: Pg.
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The “slow” equation ẏ = Pg(y) is then simple to integrate, because it involves timescales greater
than or equal to τm+1. We deem the mth time process fast [40] when the following vectorial
inequality is met:

τm+1 × |
m∑

i=1

aifi| < εrel|y| + εabs1. (14)

Here |y| denotes the vector whose elements are absolute values of the entries of the n-dimensional
vector y, 1 is the vector of ones 1 = (1, 1, . . . , 1)T ∈ R

n, and εrel and εabs are user specified
tolerances. The simplified non-stiff ODE system ẏ = Pg(y) can then be integrated using time
steps on the order of ατm+1 with 0 < α . 1 [40, 44]. We outline one-step of the CSP integrator in
Algorithm 1.

Algorithm 1 One step of the CSP time integrator (assuming modes 1, . . . , m are fast)

Λ(t) =
[
Λij(t)

]
=

(

ḃ
T
i + bT

i J
)

aj

∣
∣
∣
t

Γ(t) =
(
Λ(t)

)−1

ŷ(t + ∆t) = y(t) +

∫ t+∆t

t
Pg(y(s)) ds {Integration of the slow dynamics}

fj(t) = bi(t) · g
[
ŷ(t + ∆t)

]
, j = 1, . . . , m

δy(t) =

m∑

i=1

γi(t)ai(t), where γi(t) =

m∑

j=1

Γij(t)fj(t)

y(t + ∆t) = ŷ(t + ∆t) − δy(t) {Radical correction}

Remark 2.1 Initially, with m = 0, the full ODE system (8) is integrated with no CSP simplifica-
tion and using time steps on the order of ατ1 with 0 < α . 1.

Remark 2.2 In the present implementation of CSP, we use the approximation:

∫ t+∆t

t
Pg(y(s)) ds ≈ ∆t × Pg(y(t)),

which amounts to using the (reduced) Euler’s method:

y(t + ∆t) = y(t) + ∆t × Pg(y(t)) − δy(t).
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3 Stochastic system Jacobian

Consider the uncertain dynamical system (8). For each ξ ∈ Ω∗, we have a corresponding system
trajectory and also a system Jacobian, J(ξ),

Jij =
∂gi

∂yj
, i, j = 1, . . . , n. (15)

We shall further assume that the stochastic Jacobian J is in
(
L2(Ω∗)

)n×n
and is almost surely

R-diagonalizable with n distinct (stochastic) eigenvalues. In the scope of the present simplified
CSP reduction approach, we are interested in defining a spectral representation of J(ξ) according
to:

J(ξ) =
P∑

k=0

JkΨk(ξ), ξ ∈ Ω∗. (16)

Interest in such a spectral representation of J stems from two main reasons. In the first place,
we would like to characterize the dependence of system eigenvectors on the uncertainty given by
ξ. Secondly, we would like to explore the CSP reduction using nominal eigenvectors, i.e. the
eigenvectors of the nominal system. Therefore, it is necessary to have an expression of the Jacobian
that preserves the physical interpretation of its eigenvectors; that is, each eigenvector is in R

n.
Consider the Galerkin system (11′). We denote the corresponding Jacobian by J which is a

(deterministic) N ×N matrix with N = n(P + 1). Let u be a random n-vector in Vp with spectral

expansion u =
P∑

k=0

ukΨk. As mentioned in Section 2.3, the modes uk define the coordinates of u in

(Vp)n which we denote by [u]. The matrix J ∈ R
N×N is indexed [9,24] so that it acts on a random

n-vector u ∈ (Vp)n through its coordinate vector [u] as follows:

J [u] =







J 00 J 01 . . . J 0P

J 10 J 11 . . . J 1P

. . . . . . . . . . . . . . . .
J P0 J P1 . . . J PP














u0

u1

...
uP








,

with J kl ∈ R
n×n defined by [36]

〈
Ψ2

k

〉
J kl

ij = 〈Jij(y)ΨkΨl〉 , i, j = 1, . . . , n, k, l = 0, . . . , P. (17)

3.1 Relationship between J and J

Here we derive a simple relationship between the spectral representations for J in (16) and the
matrix J =

(
J kl

ij

)
defined in (17). For i, j = 1, . . . , n and k = 0, . . . , P we have

J k0
ij =

〈JijΨkΨ0〉
〈
Ψ2

k

〉 =

〈

(
P∑

m=0

Jm
ij Ψm

)
Ψk

〉

〈
Ψ2

k

〉 =
P∑

m=0

Jm
ij

〈ΨkΨm〉
〈
Ψ2

k

〉 =
P∑

m=0

Jm
ij

δkm

〈
Ψ2

m

〉

〈
Ψ2

k

〉 = Jk
ij .

That is,
J k0 = Jk, k = 0, . . . , P. (18)
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3.2 The affine case

In the example below, we will consider the situation where the Jacobian J is an affine function of
the system variables (see Section 5.1). In this case J is given by

Jij(y) =

n∑

m=1

am
ij ym + bij , i, j = 1, . . . , n. (19)

Inserting (19) into (17) and using the PC expansion of ym leads to:

J kl
ij =

n∑

m=1

P∑

s=0

ys
m

〈

am
ij ΨsΨkΨl

〉

〈
Ψ2

k

〉 +
〈bijΨkΨl〉

〈
Ψ2

k

〉 . (20)

In the case where am
ij and bij are deterministic (20) simplifies to

J kl
ij =

n∑

m=1

am
ij

P∑

s=0

ys
m

〈ΨsΨkΨl〉
〈
Ψ2

k

〉 + bijδkl. (21)

In Section 5.1, we will consider am
ij and bij that are uniformly distributed random variables of form

am
ij = ᾱm

ij + αm
ij ξ1, bij = β̄ij + βijξ2, ξ1, ξ2

iid
∼ U(−1, 1),

where ᾱm
ij , αm

ij , β̄ij , and βij are constants. Inserting the expressions for am
ij and bij in (20) gives:

J kl
ij =

n∑

m=1

ᾱm
ij

P∑

s=0

ys
m

〈ΨsΨkΨl〉
〈
Ψ2

k

〉 +
n∑

m=1

αm
ij

P∑

s=0

ys
m

〈ξΨsΨkΨl〉
〈
Ψ2

k

〉 + β̄ijδkl + βij
〈ξΨkΨl〉

〈
Ψ2

k

〉 .

3.3 Solving the stochastic eigenvalue problem

Here we discuss computation of the chaos coefficients of the eigenvalues λ(ξ) and right eigenvectors
a(ξ) of the stochastic Jacobian by solving the following eigenvalue problem:

J(ξ)a(ξ) = λ(ξ)a(ξ), a(ξ) · a(ξ) = 1, (22)

where · denotes the Euclidean inner product in R
n. The PC representations of λ(ξ) and a(ξ) are

λ(ξ) =
P∑

k=0

λkΨk, a(ξ) =
P∑

k=0

akΨk. (23)

Using (18) to recover the PC representation of J(ξ),

J(ξ) =
P∑

k=0

JkΨk(ξ), Jk = J k0,

and using the PC representations of λ, a, and J in conjunction with (22), we obtain

P∑

i=0

P∑

j=0

(
J i − λiI

)
ajΨiΨj = r1,

P∑

i=0

P∑

j=0

ai · ajΨiΨj − 1 = r2, (24)
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where I is the n×n identity matrix, and r1 and r2 are the residuals due to the finite truncation of
the PC expansions. Following the method of Ghanem and Ghosh [9], these residuals are minimized
by forcing their orthogonality to the basis of Vp. The stochastic eigenvalue problem becomes:







P∑

i=0

P∑

j=0

(
J i − λiI

)
aj〈ΨiΨjΨk〉 = 0, k = 0, . . . , P,

P∑

i=0

P∑

j=0

ai · aj〈ΨiΨjΨk〉 − δk0 = 0, k = 0, . . . , P.

(25)

Note that using the notation of Section 2.3 the system (25) can be simply expressed as:

{

(J − λI) ⊛ a = 0,

a ⊙ a = 1.

We compute λk and ak for k = 0 . . . P by solving the nonlinear system in (25) using Newton-
Raphson iterations, and refer to this approach as the residual minimization method.

Remark 3.1 The method of Ghanem and Ghosh [9] is formulated to compute the right stochastic
eigenvectors. In our current study, we need to compute the left stochastic eigenvectors as well. That
is, we need to solve the following problem:

b(ξ)T J(ξ) = λ(ξ)b(ξ)T , b(ξ) · b(ξ) = 1.

This can be performed easily by the same method as above except we replace J i by (J i)T in (25).

3.4 Relation between nominal and stochastic eigenvectors

Consider the eigenpairs of the nominal system Jacobian J̄ = J(ξ̄),

(λ̄i, āi), āi · āi = 1, i = 1, . . . , n,

where we have used overbars to indicate that these eigenpairs correspond to the nominal system
Jacobian. Here we work under the assumption that each λ̄i is real and simple, i.e. with multiplicity
one. For a given ξ ∈ Ω∗, consider the eigenpair (λi(ξ), ai(ξ)) of J(ξ), where ai is a unit eigenvector.
Under the assumption that λi(ξ) is a simple eigenvalue, the choice of ai(ξ) is unique up to its sign.
To make the choice of ai unique, we may multiply ai by sgn (ai· āi), where sgn denotes the signum
function.

Assuming that J depends continuously on the parameter ξ, it is well known [23] that the eigen-
values of J(ξ) depend continuously on ξ; that is, for each eigenvalue λi(ξ), we have limξ→ξ̄ λi(ξ) =
λ̄i. In the case J depends differentiably on ξ, we can say that an eigenvector of J(ξ) (chosen as
above to make it unique for each ξ) corresponding to a simple eigenvalue depends differentiably on
ξ in a neighborhood of ξ = ξ̄ (see for example [23, Theorem 8, P. 102]); this in particular implies
that,

lim
ξ→ξ̄

ai(ξ) = ai(ξ̄) = āi. (26)

A measure of deviation of ai(ξ) from ā is the angle ζi bewteen them:

cos(ζi(ξ)) = ai(ξ)· āi. (27)
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Moreover, by the assumptions on the eigen-structure of the the nominal system Jacobian, the eigen-
vectors āi form a basis of R

n. Therefore, we may expand the vectors ai in the basis {ā1, . . . , ān}:

ai(ξ) =
n∑

j=1

hij(ξ)āi. (28)

The coefficients hij provide a further means to assess how close the eigenvectors are to those of the
nominal system. Note that,

b̄k · ai(ξ) = b̄k ·
( n∑

j=1

hij(ξ)āi

)

= hik(ξ).

That is, hij(ξ) = b̄j · ai(ξ). We find it convenient to consider the matrix H = H(ξ) defined by
Hij = hij , i, j = 1, . . . , n.

In view of (26) we have
lim
ξ→ξ̄

cos(ζi(ξ)) = 1, (29)

and
lim
ξ→ξ̄

hij(ξ) = lim
ξ→ξ̄

b̄j · ai(ξ) = b̄j · āi = δij .

That is, lim
ξ→ξ̄

hij = δij ; this can be written more concisely as

lim
ξ→ξ̄

‖H(ξ) − I‖F = 0, (30)

where ‖·‖F denotes the Frobenius norm:

‖A‖F =
( m∑

i=1

n∑

j=1

|Aij |
2
)1/2

, A ∈ R
m×n.

In the computations below, we shall use the uncertainty measures cos(ζi(ξ)) and

η(ξ) = ‖H(ξ) − I‖F

to study the deviation of the stochastic eigenvectors from their nominal conunterparts.
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4 The simplified CSP framework

In this section, we generalize the CSP method introduced in Section 2.6 to the stochastic case.
Following the analysis above, our approach is based on exploiting the spectral representation of the
n-dimensional stochastic eigenvectors as CSP vectors. Accordingly, the resulting CSP formalism
involves a projection onto a stochastic manifold. Below, we develop two variants of the present
simplified stochastic CSP methodology. The first, outlined in Section 4.1, is based on using the
stochastic eigenvectors as CSP vectors. The second variant, outlined in Section 4.2, is based on
using the deterministic eigenvectors of the nominal system as CSP vectors. The latter is inspired by
the observation that for the present system, whereas the stochastic eigenvalues exhibit a pronounced
dependence on ξ, the stochastic eigenvectors are weakly sensitive to the uncertainty; thus, in this
case, the simplified CSP algorithm involves projection onto a deterministic manifold, though the
projection still involves stochastic mode amplitudes. As further discussed in Section 6, this can
lead to substantial computational savings. One of the main advantages offered by both of these
methods is enabling a natural extension of the deterministic CSP algorithm (cf. Section 2.6) to
the stochastic case by providing simplified (averaged) criteria for determination of (stochastic) fast
subspaces of an uncertain ODE system.

4.1 Stochastic eigenvectors as CSP vectors

For the uncertain system (8), we seek a decomposition of the system right-hand-side as in (13),
namely in terms of the stochastic eigenvectors of J(ξ). By our assumptions on the eigenstructure
of J(ξ), we know that its right eigenvectors {a1, . . . ,an} form a basis of R

n and hence g can be
expanded in this basis; however, the expansion coefficients fi will also be random. Considering the
weak form of (13), we arrive at:

ẏ = g(y) ≈
n∑

i=1

ai ⊛ fi, (31)

with y ∈ (Vp)n, ai ∈ (Vp)n, and fi ∈ Vp. Thus, we have to compute the n stochastic coordinates
fi(ξ) of the system right-hand side in the space spanned by the right stochastic eigenvectors. The
coefficients fi are evaluated using the Galerkin dot product:

fi ≈ bi ⊙ g, (32)

where we have relied on the approximate orthogonality between the stochastic left and right eigen-
vectors.

With m fast modes, the system (31) is reduced according to:

ẏ ≈
n∑

i=m+1

ai ⊛ fi ≈ (I −
m∑

i=1

ai ⊛ bi)

︸ ︷︷ ︸

P

⊛g =: P ⊛ g. (33)

The difficulty in the stochastic case is that in general m will depend on ξ. Instead of seeking
a criterion guaranteeing m fast modes for all (or almost all) ξ ∈ Ω∗, which is a difficult task, we
formulate an approximate criterion in a mean-square sense. Specifically, we deem the first m modes
fast if the following inequality holds:

〈

(τm+1 ⊛

m∑

i=1

ai ⊛ fi)
2

〉

< εrel

〈
y2

〉
+ εabs1, (34)
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where it is understood that the square operator applies component-wise on the corresponding
vectors [41]; that is, y2 denotes a vector whose n components are the squares of the corresponding
components of y. Note that the criterion in (34) is convenient to implement, because in actual
computations the stochastic quantities are represented by their coordinates in the orthogonal basis
of Vp. For instance,

〈
y2

〉
=

P∑

k=0

〈
Ψ2

k

〉 (
yk

)2
.

Different criteria can be considered also, as further discussed in Section 4.1.2.

4.1.1 Algorithm for simplified CSP with stochastic eigenvectors

Assembling all the previous components, we end up with the following stochastic CSP algorithm 2,
for the integration of the solution over a time step. Note that for a system with m fast modes,
Algorithm 2 can be used for integration of the simplified stochastic system ẏ = P ⊛ g with time
steps on the order of ατ0

m+1 with 0 < α . 1. Note that τ0
m+1 is the mean of τm+1.

Algorithm 2 One step of CSP integration (assuming modes 1, . . . , m are fast) for the stochastic
system using the stochastic right eigenvectors as CSP vectors.

Λ(t) =
[
Λij(t)

]
=

(

ḃ
T
i + bT

i ⊛ J
)

⊛ aj

∣
∣
∣
t

Γ(t) =
(
Λ(t)

)−1

ŷ(t + ∆t) = y(t) +

∫ t+∆t

t
P ⊛ g(y(s)) ds {Integration of the slow dynamics}

fj(t) = bj(t) ⊙ g
[
ŷ(t + ∆t)

]
, j = 1, . . . , m

δy(t) =
m∑

i=1

γi(t) ⊛ ai(t), where γi(t) =
m∑

j=1

Γij(t) ⊛ fj(t)

y(t + ∆t) = ŷ(t + ∆t) − δy(t) {Radical correction}

We observe that Algorithm 2 involves solving the stochastic eigenproblem along with several
Galerkin products. In addition, it involves the inversion of the stochastic matrix Λ(t), which can be
accomplished either through a Galerkin linear solve as outlined in [24] or adaptation of an iterative
method for approximation of a matrix inverse to the stochastic case as outlined in Appendix A. In
cases when the nominal system dynamics can be reliably used to approximate the stochastic system
trajectory, we may use the nominal system eigenvectors as CSP vectors as discussed in Section 4.2;
we will see that using the basis of eigenvectors of the nominal system Jacobian simplifies many of
the computational steps in Algorithm 2.

4.1.2 Remarks

The criterion (34) was derived by mimicking its deterministic counterpart. We note that by using
such averaged criteria we are paying two penalties. In particular, at any time step where we
deem m modes fast, some realizations may not satisfy the corresponding deterministic criterion.
Conversely, there will be realizations which would have been deemed fast at an earlier time, but are
still retained in the simplified interpretation above. Thus, generally, the simplified interpretation
in (34) may lead to higher projection errors than one would anticipated based on the specified
threshold, and also to a suboptimal integration efficiency. On the other hand, the advantage of the
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present approach is that it naturally leads to a characterization of the fast and slow manifolds in
R

n due to the uncertainty germ ξ.
Also, note that alternate strategies are possible for picking a criterion based on definition of

global characteristic timescales. An example illustrating this alternative is provided, based on the
observation that the stochastic eigenvalues yield information on the timescales for every ξ ∈ Ω∗.
In particular, if the timescales τi ∈ R

+ associated to each stochastic eigenvector ai can be suitably
bounded, one can then exploit the appropriate bound to determine a unique number m of fast
modes that is valid over the whole uncertainty range. An approximation for the global timescale
may be based on the second moment of the associated eigenvalue:

¯̄τi =
1

√
〈
λ2

i

〉 . (35)

Similarly, the deterministic criterion (14) can be extended in the stochastic case by replacing the
absolute values by L2-norms. This results in the alternate criterion

¯̄τm+1 ×

〈
( m∑

i=1

ai ⊛ fi

)2
〉1/2

< ǫref

〈(
y
)2

〉1/2
+ εabs1, (36)

where as before it is understood that the square and square root operators apply component-wise on
vectors. For a system with m fast modes, Algorithm 2 can be used for integration of the simplified
stochastic system ẏ = P ⊛ g, with time steps of the order of α¯̄τm+1 with 0 < α . 1. Note that
owing to the definition of a global characterization of the timescales, as opposed to (34), one avoids
the need to compute the PC expansion of (λi(ξ))−1.

4.2 Nominal system eigenvectors as CSP vectors

We have seen that the extension of the deterministic CSP method to the stochastic case involves the
calculation of the left and right stochastic eigenvectors and eigenvalues of the stochastic Jacobian
J(ξ). These are computed through the solution of nonlinear deterministic problems after stochastic
discretization in Vp. It can be anticipated that the determination of the stochastic eigenspaces
constitutes the most computationally demanding part of the stochastic CSP method, justifying the
question of the possibility to bypass this step in order to reduce the computational cost. In many
cases, as it will be shown later for the example treated in the paper, the uncertainty in the system
induces a moderate variability of the eigenvectors, such that the stochastic eigenvectors can be well
approximated by the deterministic eigenvectors of the nominal Jacobian J̄ = J(ξ̄), allowing for
the expansion of the stochastic system right-hand-side in the basis of the deterministic nominal
eigenvectors. Using the nominal system eigenvectors for CSP vectors effectively uses the dynamics
of the nominal system as a guide for determining the fast and slow subspaces for the uncertain
system. This approach involves significant computational savings highlighted by not having to
compute the stochastic eigenvectors.

Assuming such approximation is valid, we begin by reformulating the uncertain system (8) by
expanding its right-hand-side in the basis of the nominal eigenvectors {ā1, . . . , ān}:

ẏ = g(y) =
n∑

i=1

āifi. (37)

The expansion coefficients (mode amplitudes) fi are stochastic and are given by

fi(ξ) = b̄
T
i g(y, ξ), i = 1, . . . , n, (38)
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where b̄i ∈ R
n are the nominal left eigenvectors.

The stochastic equation (37) can be projected onto Vp, resulting in

ẏk =
n∑

i=1

āif
k
i , k = 0, . . . , P. (39)

For m fast modes, we obtain the following simplified system

ẏk ≈
n∑

i=m+1

āif
k
i = (I −

m∑

i=1

āib̄
T
i )

︸ ︷︷ ︸

P̄

gk =: P̄gk. (40)

Note that, presently, the projection operator P̄ on the slow dynamics space is deterministic, and
the same for all the stochastic modes of the solution. This has to be contrasted with the method
developed above.

Also note that the present simplification calls for a re-interpretation of the criterion (34). Specif-
ically, we need to insert the spectral representations for fi and y in the inequality (14). Similar to
the approach used for Algorithm 2, we use following approximate criterion:

〈

(
τ̄m+1

m∑

i=1

āifi

)2

〉

< εrel

〈
y2

〉
+ εabs1.

Note that the situation is simpler because τ̄m+1 = 1/λ̄m+1 and āi are deterministic. Recall that
(λ̄i, āi) are the eigenpairs of the nominal system.

4.2.1 Algorithm for the simplified CSP with nominal eigenvectors

For a system with m fast modes, Algorithm 3 can be used for integration of the simplified stochastic
system ẏk = P̄gk, with time steps on the order of ατ̄m+1 with 0 < α . 1.

Algorithm 3 One step of CSP integration (assuming modes 1, . . . , m are fast) for the stochastic
system using the nominal right eigenvectors as CSP vectors.

Λ̄(t) =
[
Λ̄ij(t)

]
=

(
˙̄bT
i + b̄

T
i J̄

)

āj

∣
∣
∣
t

Γ̄(t) =
(
Λ̄(t)

)−1

for k = 0 to P do

ŷk(t + ∆t) = yk(t) +

∫ t+∆t

t
P̄gk(y(s)) ds {Integration of the slow dynamics}

end for

fk
j (t) = b̄

j
(t) · gk

[
ŷ(t + ∆t)

]
, j = 1, . . . , m, k = 0, . . . , P

for k = 0 to P do

δyk(t) =
m∑

i=1

γk
i (t)āi(t), where γk

i (t) =
m∑

j=1

Γ̄ij(t)f
k
j (t)

yk(t + ∆t) = ŷk(t + ∆t) − δyk(t) {Radical correction}
end for
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5 A model problem

In this section, we recall the 3-species model problem of Valorani et al. [42] and discuss its main
properties in view of the CSP formalism. The deterministic problem is specified in section 5.1.
Section 5.2 discusses the deterministic solution, illustrating the evolution of the mode amplitudes
and the criterion determining the dimensionality of the fast subspace, given in (14). The Galerkin
form of the stochastic system is then derived in section 5.3.

5.1 The deterministic problem

We consider the following nonlinear system [42]







ẏ1 = −
5y1

ε
−

y1y2

ε
+ y2y3 +

5y2
2

ε
+

y3

ε
− y1,

ẏ2 =
10y1

ε
−

y1y2

ε
− y2y3 −

10y2
2

ε
+

y3

ε
+ y1,

ẏ3 =
y1y2

ε
− y2y3 −

y3

ε
+ y1,

(41)

with small parameter ε = 10−2. We shall refer to (41) as the VG model. The initial conditions are
chosen to be

y1(0) = y2(0) = y3(0) = 0.5. (42)

The Jacobian of the source term with respect to the state variables, yi, i = 1, . . . , 3, is:

J =











−
5

ε
−

y2

ε
− 1 −

y1

ε
+ y3 +

10y2

ε
y2 +

1

ε

10

ε
−

y2

ε
+ 1 −

y1

ε
− y3 −

20y2

ε
−y2 +

1

ε

y2

ε
+ 1

y1

ε
− y3 −y2 −

1

ε











. (43)

We shall simply refer to J as the Jacobian of (41).

5.2 CSP timescales

Figure 1 (top) shows the evolution of the solution and of the system timescales. Note that the
state vector tends towards a steady state, corresponding to the stable equilibrium point y∗i = 1,
i = 1, . . . , 3. It is also evident that there is a pronounced disparity between the timescales of
the system. In particular, the largest timescale is by more than three orders of magnitude larger
than the remaining two, as depicted in Figure 1 (bottom). Hence, the system trajectory quickly
approaches a one-dimensional manifold as the fastest two modes get exhausted. The time scale
disparities makes this system well suited to CSP analysis, particularly to mitigate the corresponding
stiffness and to alleviate the computational needs by allowing bigger explicit time steps.

Figure 2 shows the mode amplitudes, fi, computed based on the right-hand side of (41). Both
f1 and f2 exhibit a large drop, reaching values that are negligible compared to f3. The figure also
depicts the difference between the left-hand side and the right-hand side of the inequality (14),
namely:

Cexh = τm+1 × |
m∑

i=1

aifi| − εrel|y| − εabs1. (44)
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Figure 1: Evolution of the solution vector (top) and of the reaction time scales (bottom) for
the deterministic system. The VG model is integrated using an explicit first-order scheme with
∆t = 10−4.
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Figure 2: Top: Evolution of the modes amplitudes |fi|. Bottom: evolution of index Cexh defined
in (44), for the deterministic solution shown in Fig. 1.
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for m = 1 and m = 2 (we used εrel = 10−3 and εabs = 10−10 in our computations). Note that, as
before, in (44) the absolute value operator acts compenent-wise on vectors. Once all components
of Cexh become negative, the mode is deemed exhausted. Hence, it can be inferred from this plot,
that the first and second modes exhaust around t = 3 × 10−3 and t = 2 × 10−1 respectively.

5.3 Galerkin formulation of the uncertain VG model

Consider the system (41) introduced in section 5.1. We now assume that the rate parameter, ε,
and the initial conditions are uncertain. Furthermore, we assume that these random variables are
independent and uniformly distributed, namely according to:

y1(0) = y0
1 + ν1ξ1, y2(0) = y0

2 + ν2ξ2, y3(0) = y0
2 + ν3ξ3, ε−1 = ε−1

0 + ν4ξ4,

where ξi
iid
∼ U(−1, 1), i = 1, . . . , 4. Thus, we work in the probability space (Ω∗,B(Ω∗), Fξ) as

introduced in section 2. In the present case case we have Ω∗ = [−1, 1]4, and the expected value of
the random vector ξ = (ξ1, . . . , ξ4) is ξ̄ = 0.

In our numerical experiments, we choose the nominal values for y0
1, y0

2, and y0
3 as in (42) and

ε−1
0 = 100 (also the nominal value), and use the following sets of values for ν1, ν2, ν3, and ν4:

ν1 = ν2 = ν3 = 0.02, ν4 = 1, (45)

ν1 = ν2 = ν3 = 0.2, ν4 = 10. (46)

To illustrate the effect of randomness on the system trajectory, we select a small sample of
random parameters corresponding to ranges of uncertainty given through (45), and plot in Fig-
ure 3(a) realizations of yi(t, ξ), and in Figure 3(b) the realizations in phase space. Note that as
time increases, all trajectories converge to the same (determinisitic) equilibrium point, and that
the uncertainty amplitude decreases.
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Figure 3: Realizations of the uncertain dynamics: (a) evolution of yi(t, ξ); (b) trajectories in
phase-space. These plots correspond to the case of ν1 = ν2 = ν3 = 0.02, ν4 = 1.

As discussed in section 2.4, we seek to find the projection of the system trajectory in (Vp)n:

yi =
P∑

k=0

yk
i Ψk, (47)
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where the Ψk presently denote 4D Legendre polynomials in the random variables ξ1, . . . , ξ4. The
Galerkin system for (41) is given by:







ẏk
1 = −

(
5

ε0
+ 1

)

yk
1 +

yk
3

ε0
+ ν4

(

Mξ
3 − 5Mξ

1 + 5Mξ
22 −Mξ

12

)

+
1

ε0
(5M22 −M12) + M23,

ẏk
2 =

(
10

ε0
+ 1

)

yk
1 +

yk
3

ε0
+ ν4

(

10Mξ
1 + Mξ

3 −Mξ
12 − 10Mξ

22

)

−
1

ε0
(M12 + 10M22) −M23,

ẏk
3 =

1

ε0

(

yk
1 − yk

3

)

+ ν4

(

Mξ
12 −Mξ

3

)

−
1

ε0
M12 −M23,

(48)
where the factors M are given by:

Mξ
1 =

1

〈Ψ2
k〉

P∑

i=0

yi
1〈ξ4ΨiΨk〉, Mξ

3 =
1

〈Ψ2
k〉

P∑

i=0

yi
3〈ξ4ΨiΨk〉,

M12 =
1

〈Ψ2
k〉

P∑

i=0

P∑

j=0

yi
1y

j
2〈ΨiΨjΨk〉, Mξ

12 =
1

〈Ψ2
k〉

P∑

i=0

P∑

j=0

yi
1y

j
2〈ξ4ΨiΨjΨk〉,

M23 =
1

〈Ψ2
k〉

P∑

i=0

P∑

j=0

yi
2y

j
3〈ΨiΨjΨk〉, M22 =

1

〈Ψ2
k〉

P∑

i=0

P∑

j=0

yi
2y

j
2〈ΨiΨjΨk〉,

Mξ
22 =

1

〈Ψ2
k〉

P∑

i=0

P∑

j=0

yi
2y

j
2〈ξ4ΨiΨjΨk〉.

Thus, due to the simple structure of the system, involving single, double, or triple products
of random variables, a true Galerkin approximation has been used. In other words, the need for
approximate (pseudo-spectral) evaluations [6] of PC transforms has been avoided. Below, solutions
of (48) obtained using small explicit time steps will be contrasted to numerical solutions obtained
using the simplified stochastic CSP acceleration.
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6 Numerical computations

Since the CSP method involves the calculation of the system eigenvalues and eigenvectors, it is
crucial first to quantify and analyze the effect of uncertainty on these entities in order to justify
the choice of the CSP vectors. Hence, we first start in Section 6.1 by conducting a numerical
study of the effect of uncertainty using the measures defined in Section 3.4. We also provide a
brief description of the evolution of this uncertainty as a function of time. Secondly, we provide
in Section 6.1.2 a comaparison between NISP and residual minimization approaches for computing
the eigenvalues and eigenvectors of the stochastic system Jacobian. In Section 6.2, we compute the
stochastic mode amplitudes f . Finally, we compare and validate the CSP integrator using the two
algorithms described in Section 4. We also briefly discuss the performance of our proposed CSP
method versus explicit, small time step, integration of the Galerkin system.

6.1 Computation and analysis of the Stochastic Eigenvectors

In this section, we study the effects of the uncertainty on the eigenstructure of the system Jacobian.
We present results for low and moderate ranges of initial uncertainty and show the effect of ran-
domness first at t = 0 and then track the effect of randomness on fast and slow system manifolds
over time. We also briefly examine the convergence of the predictions as a function of the order of
the PC expansion.

6.1.1 The situation at t = 0

Here we analyze the impact of uncertainty at the initial time. Figure 4 shows the corresponding
PDFs for the η(ξ) = ‖H(ξ) − I‖F at t = 0. These were generated using the NISP approach. Recall
that η(ξ) measures the deviation of the stochastic eigenvectors from those of the nominal system.
We notice that the support of the PDFs of η shift to the right as the level of uncertainty increases,
consistently with the corresponding values of νi.

Figure 5 shows the distribution of cos(ζi(ξ)) at t = 0, which quantifies the inclination of stochas-
tic eigenvectors ai(ξ) with respect to their “nominal” counterparts. The support of the PDFs of
cos(ζi(ξ)) is in the neighborhood of 1, i.e. ζi ≈ 0, for both levels of uncertainty considered. This
implies that the uncertainty has a weak effect on the orientation of the stochastic eigenvectors as
they remain essentially aligned with the corresponding eigenvectors of the nominal system. Figure 6
depicts the distributions of the eigenvalues at t = 0. Note in particular that the slowest mode of the
system, corresponding to λ3, shows a large range of uncertainty in the case of ν1 = ν2 = ν3 = 0.2
and ν4 = 10. Furthermore, a smaller level of uncertainty results in a tighter PDF for all λi.

For all quantities considered, η(ξ), cos(ζi(ξ)), and λi(ξ), the results show general convergence
of the predictions as the PC order increases, albeit with small changes in the |λ3| PDF still evident
in going from second to third order PC for the higher uncertainty case. Allowing for these minor
differences, we may say that at least a second order expansion is required to capture the large-scale
structure the PDFs at the start of the computations. Based on the behavior of the stochastic
system, illustrated in Fig. 3, the uncertainty level is expected to decrease as a function of time,
which indicates that the expansion order does not need to be increased as the system evolves.
Therefore, in all the simulations below we use a PC expansion order No = 2.

6.1.2 Comparison between NISP and residual minimization

To assess the validity of our results, we compare the eigenvalues and eigenvectors of the stochas-
tic system computed using NISP (Section 2.4.1) and the residual minimization (Section 3.3) ap-
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Figure 4: PDFs of η at time t = 0. Left: ν1 = ν2 = ν3 = 0.02 and ν4 = 1; right: ν1 = ν2 = ν3 = 0.2
and ν4 = 10. The curves are generated using NISP with 10 Gauss quadrature points and different
expansion orders (No), as indicated.

proaches. The PC coefficients of the eigenvalues λi computed using both approaches are compared
in Figure 7. We compare the respective deviations of the eigenvectors from their nominal counter-
parts in Figure 8 where we show the spectral coefficients of cos(ζi) computed via NISP and residual
minimization. Finally, in Figure 9, we compare the spectral representations of hij(ξ) estimated
using both methods. In all cases, a very good agreement between the two methods is observed.

From Figure 7, we see that the the stochastic eigenvalues exhibit a somewhat broad spectrum,
with significant “energy” in the higher modes. This implies that uncertainty has a significant
effect on the stochastic system timescales. On the other hand, the spectrum of cos(ζi) exhibits an
essentially degenerate structure, with order-of-magnitude differences between the amplitude of the
mean, which remains close to 1, and that of higher modes. This is consistent with the support
of the PDFs in Figure 5. The spectra of the hii, depicted in Figure 9, follow a similar trend to
those of cos(ζi) with a mean close to 1 and very low amplitudes for the higher modes. Moreover,
all the amplitudes of hi6=j are very small. These findings imply that for the present system, the
eigenvectors are much less affected by uncertainty than the eigenvalues, which motivates the present
simplified CSP approach, including the use of deterministic nominal eigenvectors.
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Figure 5: PDFs of cos(ζi) at time t = 0. The left column corresponds to ν1 = ν2 = ν3 = 0.02
and ν4 = 1, and the right columns corresponds to ν1 = ν2 = ν3 = 0.2 and ν4 = 10. The curves
are generated using NISP with 10 Gauss quadrature points and different expansion orders, No, as
indicated.
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generated using NISP with 10 Gauss quadrature points and different expansion orders, No, as
indicated.
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Figure 9: The spectrum of the coefficients hij computed at time t = 0. Plotted are curves generated
using NISP with No = 2 and 10 Gauss quadrature points (blue), and using the residual minimiza-
tion approach of Ghanem and Ghosh [9] (green). The results are generated using ν1 = ν2 = ν3 = 0.2
and ν4 = 10.
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6.1.3 Evolution of uncertainty over time

Figure 10 shows the time evolution of the distribution of η(ξ). The results show that, as expected,
the range of uncertainty in the eigenvectors of the stochastic system Jacobian becomes smaller as
time increases. However, we note that the uncertainty in η continues to be present even in large
time, even though the system has essentially reached a deterministic steady state. Thus, even at the
equilibrium, the impact of uncertainty does not totally vanish. This is a reflection of the fact that,
whereas the equilibrium point is independent of ξ, the Jacobian of the system at the equilibrium
point remains a stochastic quantity, namely due the assumed uncertainty in the rate ǫ.
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Figure 10: Evolution of the PDFs of η computed for ν1 = ν2 = ν3 = 0.02 and ν4 = 1. The results
are obtained using a second order PC expansion with spectral coefficients computed via NISP.

6.2 Stochastic system timescales

To get further insight into the effect of uncertainty, we consider the evolution of the amplitudes, fi,
appearing in the eigenvector decomposition of the stochastic source term. The PC representations
of these amplitudes are given by:

fi =
P∑

k=0

fk
i Ψk
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and the absolute values of the coefficients |fk
i | are plotted in Figure 11. We note that only mode f0

3

corresponding to the zeroth order (mean) of the slowest physical time scale, preserves a relatively
high amplitude compared to the other modes. This mode is closely related to the slow reaction
time scale τ̄3 of the deterministic system illustrated in Figure 1. Furthermore, |f0

3 | is comparable to
the third mode of the deterministic system f3 (Figure 2). This result is not surprising because, as
discussed in Section 6.1.2, the eigenvectors bi are weakly affected by the uncertainty. This further
motivates the use of the nominal eigenvectors in the simplified CSP analysis.
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∣ of the Galerkin system with No = 2. The

expanded ODE system model (48) is integrated using an explicit first-order scheme with ∆t = 10−4.
Shown are plots generated for two different levels of uncertainty, as indicated.

6.3 Validation of the stochastic CSP integrator

We implemented the two simplified CSP approaches described in Section 4 to efficiently integrate
the stochastic Galerkin system. Figure 12 shows the mean trajectory along with two standard
deviation bounds (dotted lines) for the species of the system discussed in Section 5. Shown are
results computed using explicit integration with small ∆t, and the two simplified CSP algorithms.
The figures reveal close correspondence between the different predictions. In particular, there is a
close agreement in the solution transients, and in all cases the stable deterministic equilibrium is
reached.

To quantify the differences between the predictions, we rely on the L2 norms defined below.
Since the system components exhibit similar behavior, we focus on the first component y1(t, ξ).
To simplify the notation, we shall use Y to denote the component y1 obtained via explicit, small
time step, integration of the Galerkin system, Ỹ the corresponding prediction obtained using Al-
gorithm 2, and Ŷ the estimate computed via Algorithm 3.

We first check the accuracy of the Galerkin approximation by computing the relative error:

E(t) =
‖y(t, ·) − Y (t, ·)‖L2(Ω∗)

‖y(t, ·)‖L2(Ω∗)

. (49)

where the norms were approximated via Monte Carlo integration. In other words, we pick a sample
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Figure 12: Random system trajectory computed using (a) explicit integration of the Galerkin
system, (b) CSP with stochastic eigenvectors, and (c) CSP with nominal eigenvectors. The dotted
lines show two standared deviation bounds. In all cases, the simulations are performed using
ν1 = ν2 = ν3 = 0.02 and ν4 = 1.

S ⊆ Ω∗ and estimate E according to:

E(t) ≈

( 1

|S|

∑

q∈S

|y(t, q) − Y (t, q)|2
)1/2

( 1

|S|

∑

q∈S

|y(t, q)|2
)1/2

,

where |S| denotes the number of elements in S. Note that for a fixed q ∈ S, y(t, q) is the solution
of a deterministic problem. In Table 1, we report E(t) for selected values of t. Note that the
relative error is less than 0.1%, which signifies a very good agreement between the explicit Galerkin
solution and the Monte Carlo solution. Next, we test the validity of Algorithm 2 and Algorithm 3

t E(t)

10−2 6.28 × 10−4

10−1 2.15 × 10−5

100 8.06 × 10−4

101 2.23 × 10−4

Table 1: Relative L2 error between the Galerkin approximation (with a second order PC expansion)
and the Monte Carlo solution. Results correspond to ν1 = ν2 = ν3 = 0.02 and ν4 = 1.

by computing the following relative L2(Ω∗) errors,

Ẽ(t) =

∥
∥
∥Y (t, ·) − Ỹ (t, ·)

∥
∥
∥

L2(Ω∗)

‖Y (t, ·)‖L2(Ω∗)

, Ê(t) =

∥
∥
∥Y (t, ·) − Ŷ (t, ·)

∥
∥
∥

L2(Ω∗)

‖Y (t, ·)‖L2(Ω∗)

, (50)

which quantify the distance between the respective CSP estimates and the numerical solution
obtained using small time step integration. Note that computing these norms is straightforward
because the PC expansions of Y , Ŷ , and Ỹ are readily available. For instance, we have:

∥
∥
∥Y (t, ·) − Ỹ (t, ·)

∥
∥
∥

L2(Ω∗)
=

[ P∑

k=0

(
Y k(t) − Ỹ k(t)

)2 〈
Ψ2

k

〉 ]1/2
. (51)
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Figure 13: Relative error between the explicit Galerkin solution (with a second order PC expansion)
and the CSP solutions. Results correspond to ν1 = ν2 = ν3 = 0.02 and ν4 = 1.

Figure 13 shows the evolution of the norms Ê(t) and Ẽ(t). Overall, the relative error is found
to be very small (∼ 10−4). The results also indicate that for small and intermediate times (t < 10)
Ẽ rises faster than Ê, even though spectral representation of the stochastic eigenvectors is used in
Algorithm 2 whereas deterministic nominal eigenvectors are used in Algorithm 3. This is likely due
to spectral truncation errors associated with Galerkin divisions and the stochastic matrix inversion
featuring in Algorithm 2. Note however, that in both cases the peaks are of comparable magnitude,
and that at large time both Ê(t) and Ẽ(t) drop rapidly and assume nearly identical values. Thus,
for the present system, the CSP integration errors appear to be bounded, and tend to become
asymptotically small as the deterministic equilibrium point is approached. Note that the errors
in Figure 13 are computed with the order of the PC expansion fixed at No = 2. Repeating the
error analysis with No = 3 and No = 4 gave nearly identical error plots. This implies that the PC
truncation errors incurred in both algorithms are insignificant in comparison to the (small) CSP
reduction errors.

6.4 Performance of the stochastic CSP integrator

Here we quantify the performance of our CSP integrator as compared to explicit, small time-step,
integration of the Galerkin system. In Table 2, we report the CPU times required by explicit and
CSP integration of (8). The simulations were performed on an Intel Core I7 machine operating at
2.66 Ghz with 8Gb of RAM. Note that as the expansion order is increased, the Galerkin system size,

N , becomes larger according to N = n
(M + No)!

M !No!
, where n is the dimension of the corresponding

deterministic system, M is the number of random parameters, and No is the expansion order.
As indicated in Table 2, as No increases, the Galerkin system size also increases. In our model
problem, n = 3 and M = 4, so with a fourth-order expansion N = 210, a size that is representative
of large deterministic chemical kinetic systems.

We first notice the order-of-magnitude speedup when using Algorithm 3. To place the estimates
in perspective, we note that in both the Galerkin system (48) and the CSP projected system (40)
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have the same size n× (P + 1). Thus, an upper estimate of the speedup associated with CSP may
be obtained from the ratio of the number integration steps required by both methods to advance
the solution to the same final time. With Algorithm 3 only 8200 time steps are needed to integrate
the system to t = 50, whereas with explicit integration of the Galerkin system 5 × 105 time steps
are required. This translates to a ratio of about 61 which is close to the speedup values reported
in Table 2 for Algorithm 3. Thus, for Algorithm 3, the CSP operations do not incur significant
overhead.

The speedup observed for Algorithm 2 is substantially lower than that of Algorithm 3. This is
due to the additional computational costs required by Algorithm 2, namely by additional Galerkin
products, Galerkin divisions, the computation of the stochastic eigenvectors ai and bi, and the
inversion of the stochastic matrix Λ. For the present small system, these additional overheads
make Algorithm 2 mildly attractive. However, as the expansion order is increased, we observe
an increasing speed-up, suggesting that performance of Algorithm 2 increases with the dimension
of the PC basis. Moreover, for larger systems, the overheads associated with stochastic matrix
inversion may be dominated by source term evaluations. In these situations, Algorithms 2 and 3
would be expected to exhibit comparable performance.

Expansion order No=1 No=2 No=3 No=4

System size 15 45 105 210

Explicit integration CPU time 0.2 1.63 13.7 108.34
Algorithm 2 CPU time 0.22 (0.91) 0.49 (3.32) 2.14 (6.4) 15.07 (7.19)
Algorithm 3 CPU time 0.0034 (58.8) 0.027 (60.4) 0.23 (59.6) 1.77 (61.2)

Table 2: CPU time in minutes of the integration of VG model with different methods for a total
simulation time ttotal = 50. The speedup gained by CSP is shown in parentheses.
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7 Conclusions

In this paper we have applied CSP to address stiffness in a dynamical system with parametric
uncertainty. We relied on PC expansions to represent the uncertain inputs and the system response.
Specifically, a Galerkin formalism was used to derive an expanded ODE system that governs the
evolution of the PC coefficients of the state variables.

Attention was focused on the case of a dynamical system that has distinct, well separated,
timescales, and that tends to a deterministic steady state irrespective of the values of the random
inputs. A simplified CSP methodology was devoloped based on a detailed analysis of eigenvalues
and eigenvectors of the stochastic system Jacobian. The latter provided a relationship between the
PC representation of the Jacobian of the underlying uncertain system and the Jacobian of Galerkin
form of the stochastic system. Based on the PC representation of the stochastic eigenvalues, and
the spectral representation of the eigenvectors in state space, two simplified CSP algorithms were
developed. The first exploits the PC representation of the stochastic eigenvectors to describe
the dependence of fast and slow manifolds on random variables that are used to parametrize the
random inputs. In the second algorithm, the fast and slow manifolds are described in terms of the
deterministic eigenvectors associated with a nominal system.

Computational experiments were conducted to illustrate the eigenvector representations and
to test the performance of the simplified CSP integrator algorithms. The analysis showed that
for the present system, the stochastic eigenvalues exhibit a rich PC spectrum and accordingly
pronounced variability, whereas the eigenvectors exhibit an essentially degenerate spectrum with
the dominant amplitude lying in the mean. Thus, the random eigenvectors were found to remain
closely aligned with the corresponding nominal ones, which supports the use of a simplified CSP
projection onto deterministic (nominal) manifolds. While this is, of course, not guaranteed in
general, the present approach provides a feasible handle on a first-cut analysis of uncertain ODE
dynamics. The analysis of a general system using this method provides useful insights into the
major features of the underlying dynamics.

The simulations were also used to validate the explicit Galerkin solution, namely by comparison
with direct Monte Carlo integration. The validated Galerkin solution was then used to test the
performance of the simplified CSP algorithms. In all cases, a close agreement between the pre-
dictions was found, and substantial speedup in the integration of the uncertain dynamical system
was obtained. In particular, when CSP using nominal eigenvectors was used, order-of-magnitude
improvements in integration efficiency were observed.

While the simulations conducted in this paper focused on a simplified stiff system, the analysis
and computational experiments point to several potential extensions of the present stochastic re-
duction methodology. One avenue concerns the generalization of the stochastic Jacobian analysis,
and the associated characterization of the fast and slow manifolds. In the computations, we have
exploited the fact that the spectrum of the stochastic Jacobian revealed distinct real eigenvalues,
and consequently relied on pairwise comparison of stochastic eigenvectors. It appears possible
to extend this approach so that one characterizes directly the dependence of the fast and slow
stochastic manifolds on the uncertainty germ. By doing so, it may be possible to also capture the
situation where fast eigenvectors exhibit substantial sensitivity to the uncertain parameters, but
that the corresponding manifold remains weakly sensitive to these parameters. This may be possi-
bly accomplished by developing metrics that account for the angles between stochastic subspaces;
implementation of such metrics would enable us to adapt the present algorithms to more complex
conditions.

A second avenue that we also plan to explore is to consider ignition problems, which generally
exhibit large positive eigenvalues in route towards chemical equilibrium. In these problems, the
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impact of input uncertainties would generally not be expected to decay asymptotically, as was the
case in the present model problem. Consequently, a more detailed analysis may be required to assess
the performance of the stochastic reduction algorithm, and if necessary refine the implementation
of CSP exhaustion criteria.

By considering a more general suite of ignition problems, we also plan to investigate and establish
crieteria under which a deterministic reduction approach would be valid, e.g. in light of user-
defined tolerances. It is anticipated that such analyses would lead to robust guidelines under which
deterministic projections would be valid, and to extended algorithms for dynamically selecting
between deterministic and stochastic reduction schemes.

39



ACKNOWLEDGMENT

This work was supported by the US Department of Energy (DOE) under Award Number DE-
SC0001980. HNN was supported by the DOE Office of Basic Energy Sciences (BES) Division of
Chemical Sciences, Geosciences, and Biosciences. Sandia National Laboratories is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy under contract DE-AC04-94-AL85000. This report was prepared as an
account of work sponsored in part by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government
or any agency thereof. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof. The work of OLM is
partially supported by the French Agence Nationale pour la Recherche (Project ANR-2010-Blan-
0904) and the GNR MoMaS funded by Andra, Brgm, Cea, Edf, and Irsn.

A Stochastic matrix inversion

Let A ∈ R
n×n be a non-singular matrix. The following Newton iteration for computing the inverse

of A is well known [3,4, 7, 33]:
Xn+1 = Xn(2I − AXn).

As stated in [3, 4, 7] to ensure convergence, X0 is specified by

X0 = κAT , with κ ∈ (0,
2

λ1
), where λ1 is the largest eigenvalue of AAT . (52)

For the case of a stochastic matrix A ∈ (Vp)n×n, the Galerkin formulation of the above iteration is
given by,

Xn+1 = Xn ⊛ (2I − A ⊛ Xn) .

Guided by (52), we choose the initial guess through

X0
0 = κ × (A0)T , Xk

0 = 0, k = 1, . . . P.

where 0 < κ < 2/λ1 and λ1 is the largest eigenvalue of A0(A0)T . In the computations in the present
paper, this iterative method was found to be very effective in providing an approximation to the
spectral representation of the stochastic matrix inverse.
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