
Multiscale stochastic preconditioners in non-intrusive spectral
projection
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Abstract

A preconditioning approach is developed that enables efficient polynomial chaos (PC) representa-
tions of uncertain dynamical systems. The approach is based on the definition of an appropriate
multiscale stretching of the individual components of the dynamical system which, in particular,
enables robust recovery of the unscaled transient dynamics. Efficient PC representations of the
stochastic dynamics are then obtained through non-intrusive spectral projections of the stretched
measures. Implementation of the present approach is illustrated through application to a chem-
ical system with large uncertainties in the reaction rate constants. Computational experiments
show that, despite the large stochastic variability of the stochastic solution, the resulting dynamics
can be efficiently represented using sparse low-order PC expansions of the stochastic multiscale
preconditioner and of stretched variables. The present experiences are finally used to motivate
several strategies that promise to yield further advantages in spectral representations of stochastic
dynamics.
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1 Introduction

Physical systems involving multiple variables changing dynamically over time are often modeled by
systems of differential equations. In practice, the values of model parameters are not known exactly,
and are best modeled by random variables. This gives rise to dynamical systems with random pa-
rameters. When studying such systems, one often aims to compute the evolution of the stochastic
model variables, particularly to construct a statistical characterization of these variables over time.
Straightforward Monte Carlo approaches, which involve simulating the random dynamical system
with a large number of realizations of the model parameters, are too costly when working with dy-
namical systems which are computationally expensive to solve; this in turn, motivates development
of more efficient computational approaches.

An increasingly popular class of methods for quantifying uncertainty in dynamical systems
utilizes Polynomial Chaos (PC) expansions of the model variables [12, 21]. Such methods provide
an approximation of model variables in terms of a (finite) spectral expansion involving random
polynomials. Once available, the spectral expansion can be readily used to efficiently approximate
the distribution of the model components over time, with substantially smaller computational effort
compared to Monte Carlo sampling.

There are two major approaches for computing the spectral coefficients in a PC expansion,
the Galerkin method and the so-called non-intrusive methods. The Galerkin method involves
reformulating the original random dynamical system, through its Galerkin projection onto the
approximation space spanned by the PC basis [12, 21]. One then has to solve a large system of
deterministic differential equations for the time evolution of the PC coefficients. In contrast, the
non-intrusive methods share the common characteristic of not requiring the reformulation of the
original dynamical system, but aim to approximate the PC coefficients by reusing deterministic
solvers. Within this paradigm, different types of non-intrusive methods have been proposed which
can be distinguished according to means used to obtain or approximate the PC coefficients. Existing
alternatives include the non-intrusive spectral projection (NISP), the collocation method (CM),
and regression-like approaches. In the NISP method, the PC coefficients are obtained based on
an L2-projection of the model variables onto the space spanned by the PC basis [21, 37]. The
CM considers the PC basis as a set of interpolants and defines the PC coefficients as interpolation
coefficients [35, 28, 44, 3]. Finally, in regression-like approaches, the PC coefficients are obtained
from the solution of a minimization problem, namely of the distance between the spectral expansion
and a set of observations for the model variables [4].

In general, PC methods face the so-called curse of dimensionality. In the context of non-intrusive
methods, this phenomenon manifests itself by the rapid increase in the number of deterministic
realizations needed for adequate determination of the PC coefficients. This limitation has motivated
many research efforts in the past years towards complexity reduction, and great progress has been
achieved through the introduction of sparse tensorization and sparse grid techniques [17, 16, 10, 9,
26].

In addition to the issue of dimensionality, a well-known difficulty that occurs with time-dependent
dynamical systems concerns the broadening of the spectrum of the PC representation over time.
This in turns makes it difficult to approximate model variables via fixed-order PC expansions and to
select a truncation order that remains suitable over the entire integration horizon. The underlying
difficulty is that different realizations of the random solution trajectory fail to stay in phase as time
progresses. In the context of chemical systems, for instance, some realizations can reach equilib-
rium very quickly, while others can exhibit a transient behavior over substantially larger timescales.
This decorrelation of trajectories entails the excitation of higher-order modes in a straightforward
PC representation of the model variables over time. Therefore, the corresponding PC expansions
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require a large number of terms for a reasonably accurate approximation of the stochastic behavior.
The effect of such issues has been observed for example in [36]. In Section 4.3, we will see fur-
ther examples illustrating this phenomenon. Within the Galerkin framework, the approximation of
stochastic dynamics having dependence on random model parameter has given birth to alternative
techniques based on expansion over piecewise (local) polynomial bases [30, 22, 24, 40, 41], as well
as multi-resolution schemes [25, 31]. Although they enable propagation of uncertainty into systems
with complex dynamics, these advanced methods mitigate but do not address the present issue in
a satisfactory fashion, as they merely reduce the computational effort by dynamically adapting the
approximation basis, which nevertheless continues to grow and eventually becomes very large [29].
In contrast, the objective of the present paper is to introduce suitable transformations of the model
variables in such a way that a low-order spectral PC basis remains suitable for arbitrarily large
times.

In [23], the authors proposed the method of asynchronous integration in the context of the
Galerkin method. Targeting random dynamical systems having almost surely stable periodic tra-
jectories, the key idea of the approach is that, assuming a smooth dependence of the limit-cycle
with regard to the uncertain system parameters, the random trajectory can be expanded on a low
order PC basis provided that one can maintain the process nearly in phase. This is achieved by
introducing a time rescaling that depends on the random parameters.

Inspired by the work in [23], we presently explore an alternative stochastic preconditioning
approach, in the context of non-intrusive methods. The method addresses the issue of widening
spectra by introducing a global multiscale linear or affine transformation of the solution variables so
as to synchronize realizations, and consequently control their variance and PC spectrum. Compared
to the developments in [23], we relax the assumption of periodic dynamics, and exploit the non-
intrusive character of the method to introduce random scaling parameters for each of the system
variables. The method, which is illustrated for stiff chemical systems, is outlined in Section 3. In
doing so, we exclusively rely on a non-intrusive formalism based on NISP. However, we emphasize
the fact that extension to other type of non-intrusive methods is immediate. The basic idea behind
the method is to work with transformed variables in scaled time which are in phase and have
controlled spectra, i.e. the transformed variables have tight low order PC representations which can
be computed with a limited number of realizations. Subsequently, the distribution of the original
variables can be easily recovered, from that of transformed ones, through a sampling strategy.

The structure of the paper is as follows. In Section 2, we introduce the basic notation and
the background ideas needed throughout the paper. In particular, we provide a brief overview of
the PC expansion of square integrable random variables, dynamical systems with random inputs,
and the classical NISP method. Section 3 focuses on our proposed preconditioning method for
NISP. We start by introducing the random scaling parameters and define the associated scaled
variables. Next, we highlight the projection of the scaled variables onto the PC basis, and outline the
recovery of the original random model variables from their stretched counterparts. Implementation
of preconditioned NISP is illustrated for the case of a stiff chemical system that is introduced in
Section 4. The system consists of a simplified mechanism for supercritical water oxidation. Its
selection is motivated by prior analysis of similar systems [36, 25], which had revealed complex
dependence of the dynamics on random rate parameters. Computational experiments are then
presented in Section 5 where we demonstrate projection of the stretched variables and the recovery
of the original variables. The computations are further analyzed in Section 6 in light of error
and convergence estimates, and in Section 7 where we discuss an extension of the preconditioning
framework introduced earlier. A brief summary is provided in Section 8 together with a discussion
of possible generalizations.
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2 Background

In this section we fix the notation and collect background results used in the rest of the paper. In
what follows (Ω,F , µ) denotes a probability space, where Ω is the sample space, F is an appropriate
σ-algebra on Ω, and µ is a probability measure. A real-valued random variable ξ on (Ω,F , µ) is an
F/B(R)-measurable mapping ξ : (Ω,F , µ) → (R,B(R)), where B(R) denotes the Borel σ-algebra
on R. The space L2(Ω,F , µ) denotes the Hilbert space of real-valued square integrable random
variables on Ω.

For a random variable ξ on Ω, we write ξ ∼ N (0, 1) to mean that ξ is a standard normal
random variable and we write ξ ∼ U(a, b) to mean that ξ is uniformly distributed on the interval
[a, b]. We use the term iid for a collection of random variables to mean that they are independent
and identically distributed. The distribution function [15, 43] of a random variable ξ on (Ω,F , µ)
is given by Fξ(x) = µ(ξ ≤ x) for x ∈ R.

2.1 Polynomial Chaos

In this paper, we consider dynamical systems with finitely many random parameters, parameterized
by a finite collection of real-valued iid random variables ξ1, . . . , ξM on Ω. We let V = σ({ξi}M1 ) be the
σ-algebra generated by ξ1, . . . , ξM and, disregarding any other sources of uncertainty, work in the
space (Ω,V, µ). By Fξ denote the joint distribution function of the random vector ξ = (ξ1, . . . , ξM )T .
Note that since the ξj are iid Fξ(x) =

∏M
j=1 F (xj) for x ∈ RM . Let us denote by Ω∗ ⊆ RM the

image of Ω under ξ, Ω∗ = ξ(Ω), and by B(Ω∗) the Borel σ-algebra on Ω∗. It is often convenient
to work in the image probability space (Ω∗,B(Ω∗), Fξ) instead of the abstract probability space
(Ω,V, µ). We denote the expectation of a random variable X : Ω∗ → R by 〈X〉 =

∫
Ω∗ X(s) dFξ(s).

The space L2(Ω∗,B(Ω∗), Fξ) is endowed with the inner product (·, ·) : L2(Ω∗)× L2(Ω∗)→ R given
by (X,Y ) =

∫
Ω∗ X(s)Y (s) dFξ(s) = 〈XY 〉.

In the case ξi
iid∼ N (0, 1), any X ∈ L2(Ω∗,B(Ω∗), Fξ) admits an expansion of form,

X =
∞∑
k=0

ckΨk, (1)

where {Ψk}∞0 is a complete orthogonal set consisting of M -variate Hermite polynomials [1], and
the series converges in L2(Ω∗,B(Ω∗), Fξ). The expansion (1) is known as the (Wiener-Hermite)
polynomial chaos expansion [42, 6, 14, 21] of U . In practice, the Wiener-Hermite expansion
is most useful when the model parameters are parameterized by normally distributed random
variables. In cases where the sources of uncertainty follow other distributions, it is convenient to
adopt alternative parameterizations and polynomial bases. For example, in the case ξi

iid∼ U(−1, 1),
we will use M -variate Legendre polynomials for the basis {Ψk}∞0 , and the expansion in (1) is a
Generalized Polynomial Chaos [45] expansion of U .

Finally, in practical computations, we will be approximating X(ξ) with a truncated series,

X(ξ) .=
P∑
k=0

ckΨk(ξ), (2)

where P is finite and depends on the truncation strategy adopted. In the following, we consider
truncations based on the total degree of the polynomials in the series, such that P depends of the

stochastic dimension M and expansion “order” p according to: 1 + P =
(M + p)!
M !p!

, where p refers

to the largest polynomial degree in the expansion.
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2.2 Uncertain dynamical systems

Consider the autonomous ODE system, {
Ẋ = F (X),
X(0) = X0,

(3)

where the solution X of the system is a function X : [0, Tfin]→ Rn, with

X(t) = [X1(t), . . . , Xn(t)]T .

We consider the case of parametric uncertainty in the source term, i.e. F = F (X, ξ). Thus, the
solution of (3) is a stochastic process,

X : [0, Tfin]× Ω∗ → Rn.

We can rewrite (3) more precisely as{
Ẋ(t, ξ) = F

(
X(t, ξ), ξ

)
X(0, ξ) = X0, a.s.

(4)

To capture the distribution of Xi(t, ξ) at a given time, we will rely on the truncated PC
expansion,

Xi(t, ξ) =
P∑
k=0

cik(t)Ψk(ξ),

where the time-dependent coefficients cik(t) are to be computed non-intrusively, as outlined in the
following section.

2.3 Non Intrusive Spectral Projection

Let us focus on a generic component of the uncertain dynamical system at a fixed time t ∈ [0, Tfin]
and simply denote this by X. As mentioned in the introduction, non-intrusive methods aim at
computing the PC coefficients in the finite expansion (2) via a set of deterministic evaluations of
X(ξ) for specific realizations of ξ. The NISP method, that will be used in throughout this paper,
defines the expansion coefficients ck in the expansion of X(ξ) as the coordinates of its orthogonal
projection on the space spanned by the {Ψk}P0 . Observe that since {Ψk}P0 form an orthogonal
system we have (cf. for example [32]):(

X −
P∑
l=0

clΨl,Ψk

)
= 0, k = 0, . . . , P.

Therefore,

(X,Ψk) =

(
P∑
l=0

clΨl,Ψk

)
=

P∑
l=0

cl (Ψl,Ψk) = ck (Ψk,Ψk) , (5)

so that the coefficient ck is given by

ck =
〈XΨk〉〈

Ψ2
k

〉 . (6)
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In the case of Hermite or Legendre polynomials, the moments
〈
Ψ2
k

〉
in (6) can be computed ana-

lytically and hence, the determination of coefficients ck amounts to the evaluation of the moments
〈XΨk〉. We note that

〈XΨk〉 =
∫

Ω∗
X(s)Ψk(s) dFξ(s), k = 0, . . . , P.

leading to the evaluation of a set of P + 1 integrals over Ω∗ ⊆ RM to obtain the set of projection
coefficients. These integrals are classically discretized as finite sums of the form

∫
Ω∗
X(s)Ψk(s) dFξ(s) =

Nq∑
j=1

wjX(ξj)Ψk(ξj) +Rk,Nq(X), (7)

where ξj ∈ Ω∗ and wj are the nodes and weights of an appropriate quadrature formula, and
Rk,Nq(X) is the integration error. Note that the same set of nodes is used to compute all the
coefficients ck, so the complexity of NISP scales with Nq, the number of nodes where one has
to compute X. Therefore, the challenge is to design quadrature formulae yielding the lowest
integration error for the minimal number of nodes. In general, this is a difficult problem, and one
often proceeds by tensorization of one-dimensional quadrature rules. Considering a 1-D quadrature
rule with n1 nodes, its full tensorization gives a M -variate formula having Nq = nM1 nodes, showing
that this approach is limited to low M . This exponential scaling with M is often referred to as the
curse of dimensionality. The latter can be significantly tempered by relying on sparse tensorizations
of sequences of 1-D formulae using Smolyak’s formula [38], which leads to sparse-grid integration
techniques [11, 33, 34].

Irrespective of the formula considered for the computation of the ck, the set of integration nodes
comprise what we call the NISP sample and denote by

S = {ξj}
Nq

j=1 ⊂ Ω∗.

Thus, to evaluate (7) we need to compute X(ξq) for all ξq ∈ S. Let the matrix Π = (Πkj),
k = 0, . . . , P and j = 1, . . . , Nq be given by

Πk,j =
wjΨk(ξj)〈

Ψ2
k

〉 .

We call the matrix Π the NISP projection matrix. If we denote by x the vector with coordinates
xj = X(ξj), then the vector c = [c0, . . . , ck]T of the spectral coefficients in (6) is given by the
matrix vector product

c = Πx,

or in components,

ck =
Nq∑
j=1

Πkjxj =
Nq∑
j=1

ΠkjX(ξj), k = 0, . . . , P.

Going back to the original problem of projecting the n components of the solution X(t, ξ) to the
uncertain dynamical system (4), we observe that the projection matrix Π is time independent
and the same for all the components. As a result, the NISP projection of X(t, ξ) requires the
resolution of the deterministic dynamics corresponding to X(t, ξq), for each ξq ∈ S. We outline
the calculation of PC coefficients of X(t, ξ) .=

∑P
k=0 ck(t)Ψk(ξ) over time in Algorithm 1.
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Algorithm 1 The classical NISP algorithm
Nt = Tfin/∆t {number of time steps}
Nq = |S| {number of elements of S}
for j = 1 to Nq do

Compute {X(i∆t, ξj), i = 0, . . . , Nt} {deterministic solve}
for i = 0 to Nt do
ti = i∆t
for k = 0 to P do
ck(ti) = ck(ti) + ΠkjX(ti, ξj) {NISP sum}

end for
end for

end for

3 Preconditioned Non Intrusive Spectral Projection

When applying NISP (or any non-intrusive method), the computational complexity mainly depends
on the number of sampling points needed to construct the approximation. This in turn is function
of the complexity of the distribution of the random quantity one seeks to approximate, which as far
as NISP is concerned, relates to the polynomial order needed for sufficient accuracy. As a result,
the higher the polynomial order needed to obtain a suitable representation, the larger will be the
NISP sample required. Therefore, preconditioning the random quantity so as to reduce the order of
the PC expansion is of practical interest. This is the essential idea proposed in the present paper,
where we pursue this goal through the appropriate transformation of an original time-dependent
random vector X into a new one Y having a tight sparse PC expansion requiring less efforts to
be projected. Such a procedure generally involves three distinct steps, namely the definition of the
transformation (Section 3.1), the projection of the transformed variables (Section 3.2), and finally
the recovery of the original variable (Section 3.3) for the purpose of sampling and analysis.

Taking advantage of the non-intrusive character of the proposed method, the preconditioning is
performed separately for each component, Xi, of the system. Therefore, for convenience, we drop
in this section the superscript i and consider a generic component X and its transform Y . Since
in the present applications we will restrict ourselves to scaling-type transformations, we shall often
refer to the transformed variable Y as the scaled variable.

3.1 Variable transformations

Recall that the state variable X is a stochastic process, X : [0, Tfin]× Ω∗ → R. We introduce the
transformed variable Y = Y (τ, ξ) that depends on a scaled time τ . The scaled time τ = τ(t, ξ) is
defined through,

τ(t, ξ) =
t

t̂(ξ)
, t ∈ [0,+∞), (8)

where t̂ : Ω∗ → (0,∞) is a random variable which we call the time scaling factor. We assume that
there exist positive constants κ1 < κ2 such that

κ1 ≤ t̂(ξ) ≤ κ2, for almost all ξ ∈ Ω∗.

In general, we define the scaled variable Y by

Y (τ(t, ξ), ξ) = Φ[X(t, ξ)].
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where Φ is an invertible mapping on L2(Ω∗). In the present work, we will mainly focus on the case
of linear scaling defined through

Φ[X(t, ξ); ĉ] =
1
ĉ(ξ)

X(t, ξ), (9)

where ĉ : Ω∗ → (0,∞) is an amplitude scaling factor ; we assume that there exist positive constants
ν1 and ν2 that are independent of ξ and

ν1 ≤ ĉ(ξ) ≤ ν2, for almost all ξ ∈ Ω∗. (10)

Note that (10) ensures that ĉ ∈ L∞(Ω∗) ⊂ L2(Ω∗); moreover, we have 1/ĉ ∈ L∞(Ω∗) and since
X(t, ·) ∈ L2(Ω∗) it follows that Φ[X(t, ·); ĉ] ∈ L2(Ω∗), for every t ∈ [0, Tfin]. In the case where
X(t, ξ) is positive valued, as is the case for chemical species concentrations, we may also consider
log-linear scaling,

Φ[X(t, ξ); ĉ] = log
(

1
ĉ(ξ)

X(t, ξ)
)
. (11)

An advantage of the log-linear scaling is in preserving positivity of the recovered state variables,
as further discussed below. Moreover, since we will ultimately approximate the scaled variables
with their PC expansions, sometimes the log-linear scaling may result in a better behaved PC
representations for the scaled variables.

Remark 3.1 One may consider more general types of transformations Φ[X] and the scaling
method introduced above can be seen as a particular instance of a broader class of preconditioners.
An affine transformation is later discussed, though more general mappings are yet to be explored.

Remark 3.2 A fundamental question that we will be concerned with is: How to choose the scaling
factors t̂ and ĉ so that the scaled variable Y has a tight sparse PC representation that can be
efficiently obtained on the basis of a coarse non-intrusive sampling? In addition, we will eventually
have to approximate t̂ and ĉ via PC expansions, and hence it is of practical concern that these
scaling factors themselves have controlled PC representations. In the current work, we base this
selection on the observed behavior of the state variables of the chemical model in our study, see
Section 4. A general strategy for obtaining suitable scaling factors (and ideally selecting more
general transformations) remains an open issue, as further discussed in Section 8.

3.2 Projection of the scaled variables

Here we describe in detail the projection of the scaling factors and the scaled variables into a PC
basis.

3.2.1 Expansion of the scaling factors

We will need PC representations of the scaling factors, ĉ and t̂. These expansions will be computed
using the NISP sample set S. We will assume that for each ξj ∈ S one is able to define a
corresponding pair of factors (t̂(ξj); ĉ(ξj)); as discussed in Section 4, the corresponding realization
X(ξj , t) is used for this purpose. The expansions of the scaling factors are

ĉ
.=

P∑
k=0

ckΨk, t̂
.=

P∑
k=0

tkΨk,
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where the expansion coefficients are computed through a classical NISP procedure:

ck =
Nq∑
j=1

Πk,j ĉ(ξj), tk =
Nq∑
j=1

Πk,j t̂(ξj).

Since ĉ and t̂ are positive we may also consider the expansion of their logarithms. This again has
the advantage of preserving their positivity and in some cases yielding nicer (tighter and/or sparser)
PC spectra. In particular, we will project the logarithm of the normalized variables, ĉ(ξ)/ĉ(ξ = 0)
and t̂(ξ)/t̂(ξ = 0):

log
(
ĉ(ξ)
ĉ(0)

)
.=

P∑
k=0

σkΨk, log
(
t̂(ξ)
t̂(0)

)
.=

P∑
k=0

θkΨk,

where

σk =
Nq∑
j=1

Πk,j log
(
ĉ(ξj)
ĉ(0)

)
, θk =

Nq∑
j=1

Πk,j log

(
t̂(ξj)

t̂(0)

)
. (12)

Accordingly ĉ and t̂ are approximated through,

ĉ
.= ĉ(0) exp

(
P∑
k=0

σkΨk

)
, t̂

.= t̂(0) exp

(
P∑
k=0

θkΨk

)
. (13)

In the computations below, we will use (13) to approximate ĉ and t̂.

3.2.2 Scaled variable discretization

The major computational work in the method involves the non-intrusive projection of the trans-
formed variable Y (τ(t, ξ), ξ) = Φ

[
X(t, ξ); ĉ

]
to get its PC representation. This calls for time

discretization. Owing to the assumed properties of the time scaling in (8), for every t ∈ [0,+∞),
τ(t, ·) ∈ [0,+∞) almost surely. Moreover, for a given (t′, ξ) ∈ [0,+∞) × Ω∗, there corresponds an
(unscaled) time t given by t = t′ × t̂(ξ) and we have that

Y (t′, ξ) = Φ
[
X
(
t′ × t̂(ξ), ξ

)
; ĉ
]
.

This allows us to discretize the transformed variable Y on a fixed deterministic grid of times t′ in
the scaled space. With the slight abuse of notation where there is no confusion between τ and t′,
the PC expansion sought is then expressed as

Y (τ, ξ) .=
P∑
k=0

Yk(τ)Ψk(ξ) ≈ Φ
[
X(τ × t̂(ξ), ξ); ĉ

]
, (14)

where the PC coefficients Yk(τ) are to be computed on a fixed grid of scaled times τ . Specifically,
given ∆τ > 0 and defining τl

.= l∆τ , l = 0, 1, . . . the NISP projection of the k-PC mode of Y would
be

Yk(τl) =
Nq∑
j=1

Πk,jΦ
[
X(τl × t̂(ξj), ξj); ĉ

]
. (15)
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3.2.3 Preconditioned projection algorithm

The expression in (15) suggests an implementation where one first selects the time step ∆τ and
then performs Nq successive deterministic solves for X(t, ξj), ξj ∈ S, recording and projecting the
current state when t reaches t = (l∆τ) × t̂(ξj). However, since each component Xi of the state
vector X has its own time scale factor t̂i(ξ), we have preferred a different approach resulting in
a deterministic time integration of X(t, ξj) with a fixed time step ∆t for all the elements in S,
and to rely on an interpolation procedure to retrieve the values Xi(τ il × t̂i(ξj), ξj) needed for the
projection in (15). The projection procedure is reported in Algorithm 2.

Algorithm 2 Algorithm for projection of Y (τ, ξ)
Set N {number of deterministic time-steps}
∆t = Tend/N {deterministic time-step}
Pick an appropriate ∆τ {time-step in scaled space}
Y = 0 {Initialization}
for j = 1 to Nq do

Compute χ = {X(i∆t, ξj), i = 0, . . . , N} {deterministic solve}
[c̄, t̄] = GetScalings(ξj , χ) {compute scaling factors}
for m = 0, 1, . . . do
τ = m×∆τ {scaled time}
t = τm × t̄ {unscaled time}
if t > Tend break {reach ending time}
Interpolate X(t, ξj) from χ {preconditioned value for projection}
for k = 0 to P do
Yk(τ)← Yk(τ) + Πkj × Φ

[
X(t, ξj); c̄

]
{NISP sum}

end for {loop on PC modes}
end for {loop on time in scaled space}

end for {loop on NISP sample}

Let us examine in detail a few aspects of Algorithm 2.

• Observe that only the inner loop on m (scaled time steps) differs from a component of X
to another, as the corresponding scaling factors may differ. In fact, the most computation-
ally demanding part of the projection algorithm, namely the resolution of the deterministic
problem for each of element ξj ∈ S, need not be repeated n times. Instead, one generates n
data sets χi for the components i = 1, . . . , n of the state vector X, which are subsequently
projected independently using their corresponding scaling factors.

• An additional time Tend > Tfin has been introduced. This is necessary for recovering the
original variables from the transformed one up to Tfin, the desired final time. Letting m be
the lowest integer such that Tfin ≤ m∆τ minξ∈S t̂(ξ), then Tend should be taken such that
m∆τ maxξ∈S t̂(ξ) ≤ Tend to ensure that Algorithm 2 can project all the Y (τl), l = 0, . . . ,m.
Obviously, Tend is taken as its maximum over the n components of X in the system case.

• The procedure GetScalings, which provides the values of the scaling factors to be used to
transform the realization before projection, can be implemented in different ways. Here we
list two possibilities which will compared in the applications below.

Option 1: The scaling factors have already been projected and their PC expansions are
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known at this stage. Accordingly, GetScalings simply returns the values c̄ and t̄ given
by the respective PC expansions in (13) evaluated at ξ = ξj .

Option 2: The PC expansions of the scaling factors are not known at this stage. In this
case, GetScalings returns values c̄ and t̄ which are the scaling factors determined from
the analysis of the current realization dynamics, that is using the deterministic time
series in χ (see Section 4).

The first option supposes that the scaling factors have been previously projected, possibly us-
ing a different set of NISP nodes. This approach thus seems to waste computational resources,
because, as discussed above, the projection of the scaling factors requires the simulation of
the whole system for each point in S to determine ĉ(ξj) and t̂(ξj) used in the projection
through (12). This was not the case for the example proposed in this paper, as we could
afford to store simulation results for every ξj ∈ S, and readily reuse them in Algorithm 2
with Option 1. However, this luxury may not be an option for larger S and/or more com-
plex systems. This limitation leads to considering Option 2 where the transformation of the
realization uses scaling factors determined on the fly, i.e. based uniquely on the current
realization. For this second option, we also insert in Algorithm 2 an additional step (inside
the loop on NISP points, but external to the loop on the scaled time-step) where ĉ and t̂ are
projected, simultaneously with Y , using t̂(ξj) = t̄ and ĉ(ξj) = c̄ in (12). It is important to
remark that, due to projection errors for the scaling factors, the two options result in different
PC expansions for the scaled variables Y . Specifically, one does not recover exactly the values
ĉ(ξj) and t̂(ξj) used in (12) when evaluating (13) at ξ = ξj , because of NISP integration and
truncation errors. When using Option 2, these differences have to be controlled, as the recov-
ery procedure (to be discussed shortly) uses the PC expansions of the scaling factors to invert
the transformation. Therefore, inconsistencies in the definition of the scaling factors between
Φ (the forward transform) and its inverse Φ−1 (the backward transform) may constitute an
additional source of error.

• For the interpolation step we use a simple linear interpolation scheme to approximate X(·, ξj)
between elements in χ. Specifically, the interpolated value X(t, ξj) is evaluated from

X(t, ξj) = X(tl, ξj) +
[
X(tl + ∆t, ξj)−X(tl, ξj)

∆t

]
(t− tl),

where tl = l∆t is such that tl ≤ t < tl + ∆t. Note that higher order interpolation schemes
could be used, but this was found unnecessary in the application presented in this paper as
we could afford to store computed solutions using sufficiently small time increments ∆t.

• We have kept the algorithm general by not specifying the transformation Φ used in computa-
tion of the scaled variables. Throughout the paper, unless otherwise mentioned, we will rely
on the linear scaling as defined in (9).

3.3 Recovering the original variables

We now turn to the problem of reconstructing X(t, ξ) from the transformed variable Y (τ, ξ). The
objective is to derive an efficient procedure to resample X(t, ξ), particularly to perform various
statistical analyses. Given t ∈ [0, Tfin] and a realization ξl ∈ Ω∗, we would like to to reconstruct the
corresponding value of X(t, ξl). Again, we focus on the treatment of a single generic component
X of X, as the generalization is immediate.
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3.3.1 Backward transformation

The recovery amounts to the inversion of the transformation:

X(t, ξ) = Φ−1 [Y (τ(t, ξ), ξ); ĉ(ξ)] . (16)

For the case of linear scaling, we have

X(t, ξ) = Φ−1 [Y (τ(t, ξ), ξ); ĉ(ξ)] = ĉ(ξ)Y (τ(t, ξ), ξ), (17)

while for the case of log-linear scaling, we have

X(t, ξ) = Φ−1 [Y (τ(t, ξ), ξ)] = ĉ(ξ) exp
(
Y (τ(t, ξ), ξ)

)
. (18)

Of course, in practice we will approximate X by inserting the PC expansions of the scaling factors
and scaled variables in (16). Let us introduce the notation X̃ to denote the recovered state variable
X from the PC expansions of the scaled variable through the above relations. We have,

X̃(t, ξ) = ĉ(ξ)
{∑P

k=0 Yk(τ(t, ξ))Ψk(ξ)
}

linear scaling,

X̃(t, ξ) = ĉ(ξ)
{

exp
(∑P

k=0 Yk(τ(ξ, t))Ψk(ξ)
)}

log-linear scaling.
(19)

3.3.2 Recovery and sampling algorithms

At a given t∗ ∈ [0, Tfin], we can sample the expansion of X̃(t∗, ·) in (19) to generate an approximate
distribution of X(t∗, ·) fairly efficiently. The only issue remaining is that the PC coefficients of the
scaled variable Y are known on the fixed grid of scaled times τl which generally will not coincide with
the time τ(t∗, ·) in (19). Again, we rely on linear interpolation to compute the PC coefficients Yk
at the needed scaled time τ . The resulting procedure for computing X̃ is provided in Algorithm 3.
Note that in Algorithm 3 the procedure GetScalings returns the values of the scaling factors
evaluated from their PC expansions (as for Option 1).

Algorithm 3 Procedure for computing X̃(t∗, ξ∗) at t∗ ∈ [0, Tfin] and ξ∗ ∈ Ω∗

[c̄, t̄] = GetScalings(ξ∗) {compute scaling factors from PC expansions}
τ∗ = t∗/t̄ {scaled time}
Find τl such that τ∗ ∈ [τl, τl+1]
for k = 0 to P do

Yk(τ∗) = Yk(τl) +
[
Yk(τl+1)− Yk(τl)

∆τ

]
(τ∗ − τl) {Interpolate Yk(τ∗)}

end for {loop on PC modes}
Compute X̃(t∗, ξ∗) from (19) with τ(t∗, ξ∗) = τ∗ and ĉ(ξ∗) = c̄. {apply inverse transformation}

Finally, the complete sampling method is immediately constructed through a Monte Carlo pro-
cedure wrapped around the recovery procedure in Algorithm 3. For fixed t∗, one only has to sample
Ω∗ from the distribution Fξ to obtain a sampling of the distribution of X̃(t∗, ·). This is summarized
in Algorithm 4 which will be used in Section 6 to assess the efficiency of the Preconditioned NISP.
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Algorithm 4 Algorithm for sampling X̃(t∗, ·) at a given t∗ ∈ [0, Tfin]
Set Ns {number of sample points to be generated}
for ` = 1 to Ns do

Draw at random ξ` from the distribution Fξ {random sampling of Ω∗}
Compute X̃(t∗, ξ`) using procedure in Algorithm 3 {recover realization value}

end for {loop on sample}
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4 Model problem

In this section, we describe the dynamical system that will be used to illustrate our proposed
preconditioning strategy. The system corresponds to a hydrogen oxidation problem, based on the
reduced mechanism that was proposed in [35]. This problem was chosen because it is known to
yield solutions with broad spectra when decomposed on PC bases [37]. Previous studies based on
stochastic Galerkin projection methods showed that the solution has complex dynamics, is highly
sensitive to model parameters (rate constants), and therefore requires a fine stochastic discretization
and adaptive strategies to be properly approximated [25, 29].

4.1 Stochastic model

The reduced mechanism from [35] involves the concentrations of seven species, namely [OH], [H],
[H2O], [H2], [O2], [HO2], and [H2O2], whose evolution is governed by eight elementary reversible
reactions. We let kf,j and kr,j respectively denote the forward and reverse rate constant of the
j-th reaction, j = 1, . . . , 8. The randomness enters the model through uncertainty in the forward
reaction rates kf,j , j = 1, . . . 8. Isothermal conditions are assumed, and the standard heats and
entropies of the formation of the species are assumed deterministic. Accordingly, the equilibrium
constant constants Kc,j are deterministic, and the reverse rates are given by

kr,j = K−1
c,j × kf,j (a.s.), j = 1, . . . , 8.

We further assume that the model forward reaction rates are independent uniformly-distributed
random variables. As a result, they can be parametrized using a set of 8 IID random variables ξj ,
according to

kf,j = aj + bjξj , ξj ∼ U(−1, 1), j = 1, . . . 8,

where the constants aj and bj define the range of variability in kf,j .
Table 1 lists the eight elementary reactions, the distributions of the forward reaction rates, as

well as the value of the equilibrium constant.

Index Reaction Distribution of kf,j Equil. const. K−1
c,j

j = 1 OH +H 
 H2O U(4.68× 1013, 4.67× 1014) 0.3491× 10−30

j = 2 H2 +OH 
 H2O +H U(5.00× 1011, 7.93× 1011) 0.4380× 10−03

j = 3 H +O2 
 HO2 U(5.26× 1013, 1.31× 1014) 0.1045× 10−08

j = 4 HO2 +HO2 
 H2O2 +O2 U(5.16× 1011, 1.03× 1012) 0.9879× 10−13

j = 5 H2O2 +OH 
 H2O +HO2 U(2.20× 1012, 5.48× 1012) 0.3382× 10−08

j = 6 H2O2 +H 
 HO2 +H2 U(8.48× 1010, 3.39× 1011) 0.7723× 10−05

j = 7 H2O2 
 OH +OH U(1.26× 101, 1.26× 102) 0.1589× 10+12

j = 8 OH +HO2 
 H2O +O2 U(1.24× 1013, 1.24× 1014) 0.3534× 10−17

Table 1: Specification of the random reaction model. Listed are the elementary reactions, the
forward rate distributions, and the equilibrium constants. Units are in the cm-mol-s-K system.

In the following, we denote by X the vector of random concentrations, with X1 = [OH],
X2 = [H], X3 = [H2O], X4 = [H2], X5 = [O2], X6 = [HO2] and X7 = [H2O2]. The dynamics
of X(t, ξ) is governed by a non-linear system of first-order ODEs similar to (4) with n = 7. The
initial condition X(t = 0) is assumed deterministic with [H2](t = 0) = 2.06 × 10−6mol/cm3,
[O2](t = 0) = 1.04 × 10−6mol/cm3, and [H2O](t = 0) = 4.281 × 10−3mol/cm3; the rest of the
concentrations are zero initially. The system’s temperature and pressure are fixed at T = 823 K
and P = 246 bar.
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4.2 The sample set S

Here we briefly describe the NISP sample S we used for the purposes of computations which follow
in the subsequent sections. Recall that S is the set of integration nodes for evaluation of the PC
coefficients through (7). In our case, we used full tensorization of a (one-dimensional) 5-point
Gauss-Legendre quadrature formula [1, 2]. If we denote by S0 the set of five Gauss-Legendre nodes,
the set S is then given by

S = S0 × S0 × · · · × S0︸ ︷︷ ︸
8 times

.

Thus, S has 58 = 390, 625 elements. While this may seem like a fairly large sample, in fact it is
a fairly coarse sampling of the space Ω∗. Specifically, consistent with prior experiences in [25], we
will later illustrate that direct NISP using the present sample set does not lead to a suitable PC
representation.

4.3 Analysis of the stochastic dynamics

Figure 1 shows the evolution of species concentrations corresponding to deterministic realizations
of the system taken in S. Shown are the species O2, H2O, H, and HO2, which are typical; the case
of OH requires special treatment as later discussed in Section 8.

Figure 1 depicts the different types of dynamics observed for the species considered. The
curves for O2 (top-left) indicate that for all the realizations shown the concentration decreases
monotonically with time. Uncertainty in the model parameters only affects the decay rate of
[O2](t). A similar behavior is also reported for H2 (not shown). In contrast, the case of H2O (top-
right) corresponds to a monotonic increase of its concentration, which asymptotes to a deterministic
equilibrium value (as must be the case since the equilibrium constants are assumed deterministic).
However, the random model parameters are again seen to affect the characteristic response time of
[H2O]. HO2 exhibits a more complex behavior, with a very fast initial increase in concentration,
followed by a substantially slower monotonic decay. Unlike the previous cases where the random
inputs were seen to modulate the response time scales, in the present case the peak amplitudes are
substantially impacted as well. The case of H is essentially similar to HO2, although with slower
response time during the production stage. Also noticeable is the presence of some plateaus of
different widths, during which [H] remains nearly constant before it starts to decay.

These typical dynamics underscore potential difficulties faced in direct projection of the species
concentrations. First, for the simplest case of monotonic dynamics, it is seen that time-scale vari-
ability leads to substantial variability in the stochastic concentration at a given time. This may not
result in complex PC spectra, provided that the time-scale variability remains moderate. In fact,
the occurrence of high variability in fast time-scales is frequently observed in ignition problems,
which are known to be extremely challenging [31]. At any rate, it appears that an appropriate time
transformation reducing the time-scale variability would certainly help controlling the correspond-
ing PC spectrum. For non-monotonic dynamics, the difficulties above are further compounded by
substantial uncertainty in the position and amplitude of the maxima. This variability is anticipated
to lead to broad PC spectra, and consequently challenges in the representation of the stochastic
solution. For the case of H, the occurrence of plateaus of variable durations is anticipated to make
these challenges even more severe.

4.4 Scaling of the stochastic dynamics

We now propose appropriate transformations of the individual realizations in view of the PC pro-
jection of the transformed signals. The objective here is simply to support our choice of transfor-

16



0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−6 [O2]

t

X
5 (t

, ξ
)

0 10 20 30 40 50
4.281

4.2815

4.282

4.2825

4.283

4.2835
x 10

−3 [H2O]

t

X
3 (t

, ξ
)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−9 [HO2]

t

X
6 (t

, ξ
)

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

x 10
−14 [H]

t

X
2 (t

, ξ
)

Figure 1: Concentration versus time selected realizations in S. Shown are curves for O2, H2O,
HO2, and H, as indicated.

mations; the actual projection and the effectiveness of the resulting preconditioning are extensively
studied in the following section. As discussed previously in section 3, we take advantage of the
non-intrusive character of NISP, which allows us to freely define a different transformation suited to
each of the model variables (species concentrations). This is particularly important as we have just
seen that different species experience different types of dynamics, some having simple monotonic
behavior with variability in the characteristic time scale only, others presenting more complex evo-
lution that prevent trivial scaling laws. However, we retain transformations of the type discussed
in section 3.1, which incorporate only an amplitude scaling factor ĉi and a time scaling factor t̂i.

We base the selection of scaling factors for the model variables on their observed behavior.
In view of the plots in Figure 1, we have set the following types of scaling laws. Regarding
amplitude scaling, we distinguish the case of the species having monotonic evolutions from the case
of species with non-monotonic behavior. In the former case (monotonic), we define the amplitude
scaling factor either as the initial concentration (monotonic decay) or as the equilibrium value
(monotonic increase). Note that the asymptotic equilibrium value is known a priori as it is function
of the initial concentrations and equilibrium constants which are all deterministic. For the case
of non-monotonic evolutions, the amplitude scaling factor is defined as the maximal concentration
achieved over time. Concerning the time scaling factors t̂i, they are defined as the time at which
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the corresponding species concentrations reaches a specific concentration value which depends on
the amplitude scaling factor selected and eventually the initial concentration. We list our choice
of (amplitude) ĉi and (time) t̂i scale factor definitions for i = 2, . . . , 7 in Table 2. Note that for
Xi=3,4,5 the scaling factors ĉi are deterministic because they depend on initial or steady-state values
which are deterministic in the present experiments.

Amplitude scaling Time scaling Type
ĉ2(ξ) = max

t
X2(t, ξ) t̂2(ξ) = time for X2(t, ξ) to return to 1

2 ĉ
2(ξ) non-monotonic

ĉ3(ξ) = lim
t→∞

X3(t, ξ) t̂3(ξ) = time for X3(t, ξ) to reach
1
2

(X3(0) + ĉ2(ξ)) monotonic ↑

ĉ4(ξ) = X4(0) t̂4(ξ) = time for X4(t, ξ) to reach
1
2
ĉ4(ξ) monotonic ↓

ĉ5(ξ) = X5(0) t̂5(ξ) = time for X5(t, ξ) to reach
1
2
ĉ5(ξ) monotonic ↓

ĉ6(ξ) = max
t
X6(t, ξ) t̂6(ξ) = time for X6(t, ξ) to return to

1
2
ĉ6(ξ) non-monotonic

ĉ7(ξ) = max
t
X7(t, ξ) t̂7(ξ) = time for X7(t, ξ) to return to

1
2
ĉ7(ξ) non-monotonic

Table 2: Definition of the scaling factors ĉi(ξ) and t̂i(ξ) for the transformation of the model variables
Xi, i = 2, . . . , 7.

Using these definitions of the scaling factors, we can compute for each realization (Figure 1) the
corresponding value of the amplitude and time scale factors, and thus apply the transformations

Xi(t, ξ) 7→ Y i(t/t̂i, ξ) =
1
ĉi
Xi(t, ξ),

to obtain the corresponding realization of the (linearly) scaled model variables Y i(τ(ξ, t), ξ). These
realizations of the scaled variables are reported in Figure 2. Inspection of Figures 1 and 2 shows
that the realizations of the scaled variables present a much lower level of (relative) variability at any
time, which is even zero (by construction) at τ = t̂. Thus, the scaled variables appear to be better
conditioned for a low-order PC projection than the original variables. However, this claim is not
obvious for the two following reasons. First, the scaling factors may not have simple PC expansions
thus preventing low-order expansions. Second, even if the factors admit low-order expansion, the
associated transformations may result in scaled variables Y i with reduced variance but still having
complex (broad) spectra. These two aspects are carefully investigated in the next two sections,
where we show that, unlike the original variables, both the scale factors and scaled variables have
indeed tight sparse spectra, and can be suitably represented by low-order PC expansions.
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Figure 2: Scaled variables versus stretched time. Individual curves are obtained by transforming
the original realizations shown in Figure 1.
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5 Application of the Preconditioned NISP

In this section, the preconditioning strategy is applied to the hydrogen oxidation problem. We
focus our discussion on the species whose dynamics were discussed in the previous section. First,
we carefully examine the scaling factors ĉ and t̂ and demonstrate that they are well behaved and
admit low order PC representations. Next, we show that the preconditioning effectively allows for
low order PC representations in the transformed space, while still capturing complex features of
the original variables through the recovery procedure. In particular, we show that the precondi-
tioned NISP allows for recovery of complicated (possibly bimodal) distributions via low order PC
expansions. We delay quantitative assessments of the method’s accuracy to Section 6.

5.1 Expansion of the scaling factors

We start by projecting the amplitude and time scaling factors following the methodology introduced
in section 3.2.1. Recall that we actually compute the expansions of the logarithms of the normalized
scaling factors through (13) and (12). As mentioned in the previous section, the amplitude scaling
factors ĉ3, ĉ4, and ĉ5 are deterministic and hence we apply the above expansion only to the remaining
(random) ones.

In Figure 3, we report the results for the projection of ĉi, i = 2, 6, 7 corresponding to the
amplitude scaling factors for H, HO2 and H2O2 respectively. The top row shows, for the three
species, the expansion coefficients σik of the logarithms (as in (12)), for polynomial expansions up
to third order. The coefficients are sorted in increasing (total) polynomial degree and the vertical
dashed lines in the plots separate coefficients at successive orders p = 1, 2 and 3. Note that for
p = 3 the expansion involves 165 terms. We first observe that the fixed order spectral bands
are sparser as the corresponding p increases; the fraction of PC coefficients σik with significant
magnitude decreases with p, indicating that the different random parameters in the model do not
contribute equally to the variability in the species concentrations. This is consistent with our prior
experiences in [25]. This observation also applies to the amplitude scaling factors, as expected.

Also note that the magnitudes of the PC coefficients decay with p, which reflects the convergence
of the expansions. This is further examined by plotting in the second row of Figure 3 the normalized
cumulative “energy” E2

k(σi) contained in the first k-th modes:

E2
k(σi) .=

∑k
l=1

(
σil
)2 〈Ψ2

l

〉∑∞
l=1

(
σil
)2 〈Ψ2

l

〉 . (20)

Because the denominator is unknown, it is replaced in practice with the energy of the highest order
expansion, namely here p = 3. Plots of E2

k(σi) indicate that, for all the species shown, the first order
expansion (p = 1) accounts for greater than 95% of the total energy, the second order expansion
(p = 2) over 99%, indicating that the higher order terms have indeed negligible contributions.

Plots in the last row of Figure 3 present the probability density functions (pdfs) of the ĉi

obtained by Kernel-Density-Estimation through the sampling of (13) with third-order expansions
of the logarithms (p = 3). The pdfs show that the approximate amplitude scaling factors have
smooth unimodal distributions, similar to log-normal distributions with longer tails toward high
values and sharper tails toward the lower amplitudes. The large coefficients of variation of these
distributions have to be underlined since they directly reflect the sensitivity of the chemical system
dynamics to the random parameters. The unimodal character of the pdfs also confirms the validity
of the amplitude scaling factors definitions. Finally, the results for H and H2O2 highlight the
advantage of projecting the logarithms, namely in preserving the positivity of ĉi.
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Figure 3: Amplitude scaling factor forH (left), HO2 (center) andH2O2 (right). Top row: expansion
coefficients σik of the logarithms (see (12)) sorted by increasing total degree. Second row: normalized
cumulative energies E2

k(σi) as defined in (20). Last row: Kernel Density Estimation of the third
order (p = 3) projection of the amplitude scaling factors.

Figure 4 shows the results of projecting the time scaling factors t̂i for the same species as in
Figure 3. Briefly, we observe again the decay and sparse character in the coefficients θik (first row).
This is also reflected in the normalized cumulative energy plots for E2

k(θi) (second row), which
again show that a second-order expansion accounts more than 99% of the energy. Regarding the
Kernel Density Estimations of the third order approximate of the random time scaling factors (last
row), smooth log-normal like distributions, with large coefficients of variations, are again obtained.
This lends confidence that the time scaling factors are suitably defined.

5.2 Expansion of the scaled variables

We now analyze, in a qualitative fashion, the PC expansion of the scaled variables:

Y i(τ i, ξ) =
P∑
k=0

Y i
k (τ i)Ψk(ξ). (21)
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Figure 4: Time scaling factor for H (left), HO2 (center) and H2O2 (right). Top row: expansion
coefficients θik of the logarithms (see (12)) sorted by increasing total degree. Second row: normalized
cumulative energies E2

k(θi) as defined in (20). Last row: Kernel Density Estimation of the third
order (p = 3) projection of the time scaling factors.

Specifically, we wish to examine whether the scaling transformation enables representation of the
scaled variables using an expansion having fixed, moderate truncation order, and on the basis of a
sample set S that is expected to be too coarse for a direct non-intrusive spectral projection.

Note that the values of Xi(t, ξ) are known for all ξ in the NISP sample S and a fixed time
grid. Specifically, assuming N time steps, and letting ∆t = Tfin/N , available at our disposal are
Xi(t, ξ) for all ξ in S and all discrete times tn = n∆t, n = 1, . . . , N . Thus, when projecting the
transformed variables Y i in the scaled time we rely on linear interpolation to get values of Xi not
in the time grid, as reported in Algorithm 2.

For the results presented in this section, we rely on third-order PC expansions, which in our
case (since we have eight stochastic dimensions) involves 165 terms in (21). For brevity, attention
is focused on the concentration of H which is representative of cases involving non-monotonic
behavior, and the concentration of O2 which is representative of all cases involving monotonic
behavior.

Figure 5 shows the evolution of the mean value of the scaled H and O2 concentrations. Also
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plotted are dashed lines indicating the range of ±2σ bounds, where σ is the local standard deviation.
The latter is evaluated from the coefficients of the truncated PC expansion (21), according to:

σi(τ i) =

(
P∑
k=1

[
Y i
k (τi)

]2 〈Ψk〉2
)1/2

Comparing the results in Figure 5 to the corresponding realization plotted in Figure 2, suggests
that, though of moderate order, the PC expansion of the scaled variables is able to capture broad
features of their evolution. In particular, the variance of the scaled solution, estimated from the
PC expansion and visualized using dashed lines, appears to collapse at the stretched time τ = 1.
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Figure 5: Expected value (solid line) of the scaled concentration 〈Y i〉 versus the stretched time
variable, τ . The dashed lines show curves of 〈Y i〉 ± 2σ, where σ is the local standard deviation.
Plotted are results for H and O2, as indicated.

Figures 6–7 provide PC spectra of the preconditioned H and O2 concentrations at selected
values of the stretched time. Plotted are mode amplitudes Y i

k for k = 0, . . . , P for a third-order PC
expansion. For O2, the spectrum has rather simple structure, showing clear dominance of the mean
mode over all others. Furthermore, as τ becomes large, the spectrum essentially degenerates, with
modes Y 5

k , k ≥ 1, becoming negligible compared to Y 5
0 . This indicates that in the present case, the

variability of the solution is essentially entirely absorbed by the stochastic transformation.
For the scaled H concentration, the trends are generally similar. Note that near τ = 1, the

spectrum essentially degenerates, as is expected based on the definition of the stochastic time scale.
Unlike O2, however, at larger τ values the spectra are richer, though the mode amplitudes become
smaller as τ increases. Thus, while the global transformation simplifies the representation of the
corresponding signal, the scaled solution retains a non-trivial structure due to the complexity of
the corresponding response.

An additional qualitative check that the scaled H concentration is adequately captured by the
truncated spectral expansion is provided in Figure 8, which shows PDFs of the scaled concentration
at selected values of τ . The latter have been specifically chosen at times where the variance is large,
see Figure 5. The results show that the PDFs have smooth behavior that lacks any peculiar feature.
This also points to the possibility that a low order truncation may lead to a suitable representation.

Note finally that for both H and O2, the spectra of the corresponding scaled components are
sparse, exhibiting substantial bands where the PC coefficients have vanishing amplitudes. This
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illustrates the potential of preconditioning in leading to efficient or “compact” representations of
possibly complex stochastic dynamics.

0 100 200
−0.5

0

0.5

1
τ = 0.47893

0 100 200
−0.5

0

0.5

1
τ = 0.95787

0 100 200
−0.2

0

0.2
τ = 1.4368

0 100 200
−0.01

0

0.01
τ = 2.8736

Figure 6: Spectra of the preconditioned H concentration, Y 2, generated at selected values of the
stretched time, as indicated.

5.3 Recovering the original variables

As discussed earlier, once the PC representations of the scaled variables are available, the method-
ology of section 3 can be readily applied to recover the distributions of the concentrations in the
unstretched time variable. Examples reconstructions are given in Figures 9–10, which respectively
illustrate the distributions of [H] and [O2], as recovered from the corresponding scaled variables at
selected time instants.

The figures demonstrate that the PDFs of the original variables in the original time are much
richer than those of the scaled variables in the stretched timescale. In particular, intricate features
are observed, including extended tails, shoulders, and multiple peaks. This provides clear illus-
tration that complex stochastic behavior may be recovered from relatively much simpler variables,
provided suitable preconditioners are used.

Qualitatively, the reconstructed PDFs also appear to be consistent with the behavior of individ-
ual realizations (Figure 1), at least when one compares the ranges of the variables at corresponding
times. A quantitative analysis of the adequacy of PDFs will be conducted in the following section,
namely through comparison with Monte Carlo sampling.
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Figure 7: Spectra of the preconditioned O2 concentration, Y 5, generated at selected values of the
stretched time, as indicated.
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Figure 8: PDFs of the preconditioned solution generated at selected values of the stretched time,
as indicated. Shown are results corresponding to H concentration (i.e. Y 2).

The complexity of the reconstructed PDFs in the original time variable also suggests that
direct NISP of the original variables onto a low-order basis would not lead to a suitable spectral
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representation. This would already be anticipated based on earlier experiences using a an intrusive,
multiresolution Galerkin formalism [25]. In the following section, experiments are conducted that
demonstrate direct NISP of the same realizations onto low-order bases actually results in large
errors and generally unsuitable representations.
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Figure 9: PDF of [H](t, ξ) at selected values of time, t, as indicated.
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6 Convergence study

In this section, we assess the advantages achieved by preconditioning, particularly by contrasting
the performance of preconditioned and conventional NISP.

6.1 Error estimates

We denote ‖·‖
L2(Ω∗)

the L2-norm in the image space (Ω∗,B(Ω∗), Fξ) (see section 2):

‖X(t, ·)‖
L2(Ω∗)

= (X(t, ·), X(t, ·))1/2 .

For t ≥ 0, we define the normalized approximation error on X(t, ·), denoted by ε(t), according to:

ε(t) =

∥∥∥X(t, ·)− X̃(t, ·)
∥∥∥

L2(Ω∗)

‖X(t, ·)‖
L2(Ω∗)

, (22)

where, following the notations of section 3.3, X̃ is the recovered variable that approximates X.
Obviously, since the exact solution X(t, ·) is not known we shall instead rely on Monte Carlo
samples to estimate ε. Specifically, denoting S a sample set of ξ ∈ Ω∗ drawn from the distribution
Fξ, and letting |S| denote the size of the sample set S, we shall make use of

ε(t) = lim
|S|→∞


∑
ξ∈S

(X(t, ξ)− X̃(t, ξ))2

∑
ξ∈S

(X(t, ξ))2


1/2

, (23)

to estimate ε(t) from finite sample sets S. This error measurement will serve to quantify the
approximation errors associated to the different types of preconditioning strategies (linear / log-
linear projection, Option 1 / Option 2 in Algorithm 2). Also of interest will be the convergence of
ε(t) as the expansion order p increases, and comparison of the errors with the case of NISP without
preconditioning, that is when ĉ = t̂ = 1. In addition, because all species with index i = 2, . . . , 7
exhibit similar error dependencies with regard to the expansion order, we only report measurements
for the case of Xi=2 = [H], which has the most complex behavior. Also, for convenience, we drop
the superscript 2 from X2 and its transform Y 2 and simply refer to them as X and Y throughout
this section.

6.2 Error analysis

In a first series of tests, we monitor the convergence of the error estimate (23) for increasingly large
Monte-Carlo sample set. A typical illustration of the convergence of ε(t) as |S| increases is reported
in Figure 11. The plot shows that ε is fairly well estimated using a sample set with |S| = 50, 000,
a value that is used in all subsequent computations.

Next, we compare in Figure 12 the errors in the recovered concentration of H at different
unscaled times. The left plot corresponds to the case of the recovery from the preconditioned pro-
jections Algorithm 2 using Option-1 for the definition of the factors in the transformation, while the
right plot corresponds to Option 2. In both cases, results are shown for truncated PC expansions
with order p = 1, 2, and 3. We first remark that the two options used in the projection algo-
rithm yield comparable error levels. This demonstrates the robustness of the proposed projection
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Figure 11: Dependence of ε(t) (23) on the size of the size of Monte Carlo sample set, |S|. The
recovered solution is obtained from a the third-order projection of the scaled variable Y 2 through
Algorithm 2 with Option 2.

method, which is credited to the well-conditioned scale factors, ĉ and t̂, or more precisely their log-
arithms. In particular, the latter are accurately approximated using low order expansions such that
using either their actual (point-value) or PC approximates for the projection yields insignificant
differences at the recovery stage (which we recall uses the PC approximation in the inversion of the
transformation). This is an interesting finding as it indicates the possibility of deriving efficient “on
the fly” strategies for the preconditioned projection, without having to rely on predetermination of
the factors before realizing the actual projection. This characteristic is of particular importance in
view of adaptive strategies, yet to be deployed, where the NISP sample set would be progressively
completed to effectively reduce the projection error.

The second important observation arising from inspection of Figure 12 is the reduction of the
error when p increases. For t > 1 the error is roughly divided by two each time the expansion
order increases by one unit. However, one certainly notices the large error level for all orders
tested and at early times, t < 1/2. In fact, for t < 1/4 the normalized error ε(t) is even larger
than 1. This is mainly caused by the normalization in (22), which magnifies errors at early time
because ‖X(t = 0, ·)‖

L2(Ω∗)
= 0, and is also due to the definition of the transformation. In fact, we

have defined the scale factors from considerations of the global dynamics of the random system;
consequently one can only expect the transformation to be effective globally, but not necessarily at
early times when the system experiences dynamics with characteristic time-scales much different
than t̂. (See for instance the plot for the scaled [H] in Figure 2.)

The large error level at early time can be reduced to some extent by projecting the logarithm of
the scaled variable Y , thereby ensuring the positivity of the of the recovered variable X̃. This can be
seen from Figure 13, which depicts the resulting errors in the recovered variable for the different PC
orders (Option 2 is used in the projection algorithm). In the early stages, the error levels resulting
from the projecting log Y are smaller than those observed when Y is directly projected; ε(t) remains
large, however. This observation confirms the limitation of the global transformation and motivates
further developments, including implementation of local transformations, or transformations over
finite horizons.

Figure 13 also provides the estimated errors for the direct NISP projection ofX(t, ·), i.e. without
preconditioning or, equivalently, using ĉ = t̂ = 1 in the definition of the transformation which then
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Figure 12: Normalized errors ε(t) for the recovered concentration [H] using the preconditioned
projection with Option 1 (left) and Option 2 (right). Plotted are curves for different PC orders,
p = 1, 2 and 3, as indicated. The Monte-Carlo estimate of ε in (23) uses |S| = 50, 000.

reduces trivially to the identity. We observe that for all the orders tested, the preconditioned
NISP always provides recovered variables with higher accuracy than the direct NISP projection.
Actually, for p = 3 the achieved error reduction can be roughly one order of magnitude. Note the
improvement brought by the preconditioning varies with time, being lower at early times than at
later stages, reflecting again the potential for local time transformations. In addition, the reported
results show an apparent larger convergence rate with p of the preconditioned projection compared
to the direct one. Combined, the observations of substantially smaller error levels and faster error
decay rate provide strong motivation for the potential of preconditioned PC.
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Figure 13: Normalized error ε(t) of the recovered concentration of [H], based on projecting log Y
with Option 2 (lines) and direct spectral projection of X (symbols). Results are shown for PC
expansion orders p = 1, 2 and 3, as indicated.
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6.3 Convergence in distribution

To better appreciate the improvement brought by the preconditioning, we provide in Figure 14 a
comparison of the probability density functions of [H] at time t = 8, obtained with preconditioned
and direct (unpreconditioned) NISP with p = 1, 2 and 3. The left plot shows the PDFs of the
recovered variable for the preconditioned NISP, based on Algorithm 2 with PC expansion of the
logarithm of the scaled variable (log-linear scaling) using Option 2. The right plot shows the PDFs
for the case of the direct NISP projection along with a PDF obtained with direct Monte Carlo
sampling used as surrogate for the “exact” PDF. All curves are generated using the same number
of samples and Kernel Density Estimation (KDE) procedure [5].

Focusing first on the case of the preconditioned NISP, we remark that the PDFs for p = 2 and
p = 3 are essentially the same, while for p = 1 significant differences are observed. In particular,
with p = 1 the maximum of the density seems under-estimated and the plateau for [H] ≈ 0 is
not evident. Comparison with the exact PDF shown in the right plot (curve labeled Monte Carlo)
highlights the quality of the preconditioned projections at p = 2 and 3. In fact, even a second order
expansion provides a reasonably accurate approximation.

The fast convergence of preconditioned NISP is to be contrasted with the results of direct projec-
tion, which for the three PC orders tested remain far off the exact (Monte Carlo) result. Comparing
preconditioned and direct NISP, with p = 1 we observe that while both PDFs significantly depart
from the exact PDF, preconditioned NISP is already providing a fairly better approximation. In-
creasing the order to p = 2 and 3, the convergence of the direct projection appears much slower
in the case of the direct projection. In particular, at p = 3 the direct projection is still unable to
capture the plateau at the lowest concentration values, while it also suffers from long tails that
extend into a range of negative concentrations. Thus, the present observations clearly highlight
some of the advantages of preconditioning.
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Figure 14: PDFs of [H] at time t = 8. Left: preconditioned NISP at different PC orders as
indicated. Right: direct NISP method with the same orders. Also shown on the right is the PDF
of [H] generated with Monte-Carlo sampling.

Remark 6.1 As noted earlier, in the present early application of stochastic preconditioners, we
have relied on a fully tensorized Gauss quadrature to generate the NISP sample. No attempt has
been made to optimize the number of realizations in the NISP sample, though, as shown earlier,
the selected quadrature is not suitable for a straightforward spectral projection.

31



It is interesting to note that with a Monte-Carlo approach, a sample size of 50, 000 was found
sufficient to approximate the PDF of the solution. This is significantly smaller than the NISP sample
that includes 58 = 390, 625 realizations. This may be misleading since it may suggest that the
stochastic preconditioning approach is less efficient than MC. We should point out, however, that in
practice sparse quadratures are frequently used, which can dramatically reduce the number of NISP
samples. This would be feasible in the present case, because the stochastic preconditioning approach
enables the use of low-order expansions. By means of example, using SMOLPACK [34] with a level
6 sparse quadrature on the current eight-dimensional problem would lead to a NISP sample having
on the order of 6, 000 realizations. This would clearly support the low-order expansions afforded
by stochastic preconditioning, with a number of realizations about one order of magnitude smaller
than with MC, and nearly two orders of magnitude smaller than the present fully tensorized Gauss
quadrature.
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7 Generalized preconditioners

So far we have demonstrated that preconditioning of realizations prior to projection potentially
allows for a significant reduction in order of the PC representation and thus of computational efforts.
This was demonstrated for 6 of the 7 species present in the hydrogen oxidation problem, for which
simple scaling transformations were applied. It is clear that the complexity reduction achieved by
the preconditioned projection depends on the appropriateness of the underlying transformations.
In particular, we have seen that the transformation has to incorporate two essential features: it
should ensure a) the proper definition of the scaling factors for all realizations and b) yield PC
representation with rapid spectral decay at all times of interest for the transformed variable. It is
then legitimate to ask whether any dynamical system possesses a transformation satisfying those
two requirements. Clearly, as far as simple scaling transformations are considered, the answer is
negative and the case of OH, discussed below, is an example of such breakdown. This fact does
not, however, imply that the preconditioning has limited scope, but merely that one should be
careful when choosing the transformations on which the preconditioning would be based. In the
following, we illustrate these issues in light of the behavior for the stochastic OH concentration.

7.1 Random dynamics of OH

Figure 15 shows individual realizations of X1(t, ξ) = [OH](t, ξ). We observe that for most of the
realizations shown the dynamics are non-monotonic; the concentration grows, reaches a maximum,
and subsequently decays to its asymptotic value. For these realizations, the dynamics are fairly
similar to the case of HO2 and H shown in Figure 1, suggesting the use of a similar scaling trans-
formations with scaling factors defined as in Table 2. However, a closer inspection of Figure 15(a)
reveals that some realizations have different dynamics, specifically, a fast initial rise of the concen-
tration followed by a very slow evolution toward the equilibrium value. For these realizations, the
appropriate definition of the scaling factors is more likely to be that of monotonically increasing
dynamics.
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Figure 15: Individual realizations of X1(t, ξ): (a) long time behavior, 0 ≤ t ≤ 300, (b) short time
behavior, 0 ≤ t ≤ 20. Note that in order to enhance the appearance of the plots, not all realizations
are shown.

As a result of these different dynamics, the transformations used for the other species are not
amenable to the OH case. The previous transformation for non-monotonic dynamics cannot be used
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as some realizations do not exhibit an intermediate maximum. On the other hand, the transform
designed previously for monotonically increasing concentration is not suited to non-monotonic
realizations and yields an ineffective preconditioning.

One can think of two alternatives to address this issue. First, one could use different transfor-
mation types, depending on ξ; this corresponds to the general idea of local approximation based
on the partitioning of Ω∗, as used for instance in adaptive intrusive methods. This idea, although
attractive, will not be pursued here because of the need for efficient strategies to construct the
partition of the random parameter domain. Alternatively, one can think of more general transfor-
mations having almost surely well defined scaling factors and yielding transformed variables with
tight PC spectra. Being more aligned with the preconditioning of the other species, this latter
alternative is followed below.

Since this section is only concerned with X1 = [OH], we drop in the following the superscript
in X1 and Y 1, and simply use X and Y .

7.2 Stochastic transformation for OH

The objective is to define a transformation such that the random dynamics remain essentially
similar (in phase) for almost every ξ ∈ Ω∗. We address this issue by considering an affine scaling
transformation as follows. We begin by defining a deterministic reference dynamics, Xref through

Xref (t) = X∞
(
1− exp(−λt)

)
, λ = 1/100,

with X∞ the deterministic steady state OH concentration (uniquely determined by determinis-
tic equilibrium constants and deterministic initial concentrations). This reference ensures that
X(t, ξ) − Xref (t) has almost surely a non-monotonic dynamics consisting in an increasing stage,
followed by a decaying stage: X(t, ξ) −Xref (t) present almost surely a local maximum. This, in
turn, ensures well-defined scaling factors ĉ and t̂ as{

ĉ(ξ) = max
t

(
X(t, ξ)−Xref (t)

)
,

t̂(ξ) = time taken for
(
X(t, ξ)−Xref (t)

)
to return to 1

2 ĉ(ξ).

With these scaling factors, we define the transformation Φ according to

Φ
[
X(t, ξ); ĉ

]
=

1
ĉ(ξ)

(
X(t, ξ)−Xref (t)

)
, (24)

and consider the scaled variable Y
(
τ(t, ξ), ξ

)
= Φ

[
X(t, ξ)

]
where τ(t, ξ) = t/t̂(ξ).

Figure 16(a) shows scaled realizations, Y , corresponding to the same selection in Figure 15. We
see that the affine scaling “synchronizes” the realizations which all experience the same type of
dynamics. The variability in the scaled variables, at fixed scaled-time τ , can be appreciated from
Figure 16(b). We observe that the relative variability is well controlled except at small values τ ,
where large variation is evident. As further discussed in Section 8, this is due to our use of a global
scaling strategy which is not expected to generally address complex behavior involving a wide range
of timescales.

7.3 Projection of the scaled variable and recovery

Using the definition of the transformation in (24), the projection of the scaled variable can proceed
following Algorithm 2. We briefly examine the suitability of the preconditioning by analyzing the
distribution of the recovered solution X̃. A sample of this exercise is shown in Figure 17, where we
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Figure 16: (a) Selected realizations of the scaled variable Y (τ, ξ); (b) mean of the scaled variable
Y with ±2 standard deviation bounds, versus the scaled time τ ; (c) PDF of Y at τ = 1.6.

compare PDFs of the reconstructed solution, for different order expansions, with a PDF obtained
through Monte Carlo sampling. Intermediate times, t = 14 and t = 18, are selected at which
the unscaled realizations exhibit a wide range of variation (Fig. 15). The results indicate close
agreement between all estimates provided, indicating both the transformation and reconstruction
are performing adequately, at least for the intermediate times selected.
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Figure 17: PDFs of the recovered state variable OH compared with its true distribution obtained
via Monte Carlo simulations: (a) at t = 14 and (b) at t = 18.

One should note, however, that in the present case where complex dynamics are observed, the
preconditioner is not optimal, and not as effective as in the examples of the previous section. An
example concerns the the fact that the scaled realizations (Fig. 16(a)) do not exhibit as sharp a
collapse as for the remaining concentrations. Another example concerns the PDF of Y provided in
Figure 16(c), which exhibit a well defined shoulder around Y = 0.27, followed by an extended tail.
Thus, the scaling in the present case not as effective in simplifying the distribution of Y as in the
examples of the previous section.
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8 Summary and discussion

This paper has focused on exploring the potential of a non-intrusive stochastic preconditioning
formalism to enable efficient low-order PC representation of a complex stochastic dynamical system.
The approach is illustrated for the case of a stiff oxidation problem with large uncertainties in rate
parameters. The system had been known to exhibit a complex dependence on the stochastic rate
parameters leading to large variations in the response of individual species and in the corresponding
response timescales.

A simplified, multiscale, preconditioning approach was considered that is based on judiciously
exploiting a coarse computational database of individual realizations. The database is used to define
appropriate characteristic time and concentration scales for each species and each of the realizations.
A NISP approach is then used to express these global characteristic scales in terms of appropriate,
low-order PC expansions, and the latter are used to scale individual realizations. NISP is also used
to project the resulting stretched realizations onto the PC basis. This leads to a reprensentation of
the response of the stochastic system in terms of an appropriate combination of the PC expansions
for the preconditioners and for the stretched variables. Computational experiments conducted using
a coarse computed database showed that the preconditioning approach can lead to low-order PC
representations with rapid spectral decay, and that the latter may be efficiently sampled to recover
the distribution of the original variables in the physical timescale.

Despite their limited scope, the present experiences naturally lead to a number of basic obser-
vations, and motivate further extensions. We conclude this paper with listing a few of these:

1. The computations and analyses discussed above relied heavily on the availability of a com-
puted database of model realizations, which in particular enabled consideration of different
scalings and projection approaches, and systematic study of their associated properties. For
the present problem, construction of the realization database was relatively straightforward,
requiring moderate amount of storage and a small CPU overhead. Extension of the present
non-intrusive methodology to larger-scale would naturally benefit from the availability of
large databases, and of efficient schemes for storing, indexing, retrieving, interpolating and
otherwise transforming individual realization data.

2. The implementations above relied on simple, linear or affine, scaling transformations in order
to (approximately) synchronize between different realizations and consequently define scaled
variables having variances that are significantly smaller than those of the unscaled variables.
Once these transformations were selected, the database could be exploited in an automatic
fashion in order to determine the stretching parameters suitable for each realization, and
consequently conduct the associated NISP. In more general settings, it may be worthwhile
to consider larger families of transformations, and to determine “optimal” sets of stretching
parameters. Thus, it may be natural to approach the scaling of realizations as an optimization
problem, constrained possibly by the requirement that the PC representation of the optimal
transformation be an invertible stochastic quantity. This would in particular ensure that
the original variables can be recovered in the physical time domain. By building libraries
of suitable transformations, such optimization approaches would offer the promise of a fully
automated process for determining optimal preconditioners.

3. In the present implementations, a simplified approach was adopted for the purpose of rep-
resenting the stochastic preconditioners and the preconditioned solution, i.e. the scaled vari-
ables. Specifically, for both quantities, PC expansions were used that have the same trun-
cation order. This is evidently not an essential requirement of the present methodology, as
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expansions of different truncation order may be readily used for the preconditioner and for
the preconditioned solution. Though not considered in the present work, such mixed order
approaches may provide additional means of controlling the properties of the overall repre-
sentation, particularly to ensure that the latter can be well represented on the underlying
grid of stochastic realizations. Another possibility that has not been considered here, and
that may be worthwhile to explore, concerns the use of mixed basis representations for the
preconditioner and the preconditioned solution. Depending on the nature of the precondi-
tioner, such mixed representations may appear akin to enriched basis concepts that have been
recently advanced for PC representations [13]. Specifically, a formal link between stochastic
preconditioning and enriched basis representations may be made evident if, instead of the
usual, additive, enriched basis construction, one relies on a factorized construction in which
the enriching functions appears as factors of a PC expansion. The resulting representations
would evidently share many similarities with the preconditioning constructs, though they
would not automatically incorporate multiscale time stretching.

4. A simplified approach to preconditioning the stochastic solution was adopted that was based
on the introduction of global time scales for individual components of the solution. While this
simplified approach appeared to be suitable for the examples treated, it should be emphasized
that the resulting representation may not be necessarily optimal at all times. For instance,
in both early stages of the ignition process and at very large time, a highly efficient local
description of the stochastic solution may evidently be sought in terms of the Jacobian of
the stochastic solution. Consequently, it may appear advantageous to seek extensions of
the present formalism, in which preconditioned representations are localized over finite time
intervals. Another avenue consists of exploring links between global timescales derived from
observations of specific realizations, and local stochastic timescales, derived for instance from
computational singular perturbation [18, 19, 20, 39] analysis of the stochastic dynamical
system. For instance, the local timescales may be suitably averaged and consequently used
as means to construct or refine global transformations. Alternatively, local timescales may
be exploited to adaptively define and construct local representations.

5. An additional possibility would involve combining (locally or globally) preconditioned repre-
sentations with adaptive representation concepts in the space of random parameters. This
subject has attracted much recent interest, and several approaches have been proposed, in-
cluding multi-resolution representations [22, 24, 25], domain decomposition methods [24],
and sparse adaptive quadratures [11, 33, 34]. The potential incorporation of preconditioned
representations into such constructions is currently being pursued.

6. In most of the computations above, we have relied on a NISP approach based on a coarse
fully-tensored Gauss quadrature. Combined with the fact that individual realizations could be
efficiently generated, this enabled us to demonstrate the advantages of the stochastic precon-
ditioning in a setting where quadrature errors are naturally controlled. For higher dimensional
problems, however, or in situations where individual realizations require substantial effort to
generate, alternative approaches should be explored that enable minimization of the number
of realizations. Various alternatives can be readily implemented for this purpose, including
sparse grid methods [11, 33, 34], or compressed sensing concepts [8, 7, 27]. Implementation
of these methods to further enhance the performance of preconditioned representations is the
focus of ongoing work.
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