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Abstract. The advent of high-performance-computing and scalable methods for tackling complex PDE-
driven problems has opened the door to the use of powerful tools such as Bayesian inversion and optimal
experimental design (OED) on a new scale. This document presents several applications of OED tools within
the context of an example model: the steady-state convection-diffusion PDE. Estimating the source term of
this equation is an example of a linear inverse problem. We first focus on deterministic inversion with the
introduction of fundamental concepts and operators needed later in Bayesian inversion. Bayesian inversion
is then used to estimate the source in a probabilistic sense. Solving the Bayesian problem motivates the
OED formulation. In this context, a sensor configuration is sought such that uncertainty in the estimated
parameter is minimized. Specifically, we focus on computing A-optimal sensor placements, where we seek
to minimize average posterior variance. Our emphasis is in computational aspects of OED for infinite-
dimensional inverse problems. We conclude our computational experiments with a demonstration of the
effectiveness of optimal design strategy. Specifically, we demonstrate that the A-optimal design outperforms
naive or random sensor placements.

1. Introduction. We consider optimal experimental design (OED) for infinite-dimensional
Bayesian linear inverse problems governed by partial differential equations (PDEs). Specif-
ically, we focus on optimal placement of sensors, where measurement data are collected.
Solving such problems requires an intricate combination of methods and theories from prob-
ability, linear algebra, PDEs, and mathematical and numerical analysis. Also, in practice,
one has to work within a computational budget. In this work, we explore computational
aspects of OED for large-scale Bayesian linear inverse problem with an eye toward imple-
mentations on HPC architectures.

1.1. The model problem. We focus on a stationary convection-diffusion model for
example dynamics. It is sufficiently complex to produce some interesting results, yet simple
enough to facilitate the omission of unnecessary problem-dependent matters. Take Ω ⊂ R2

to be a bounded domain and consider the following stationary PDE:

−α∆u+ ν · ∇u = m(x) in Ω,

u ≡ 0 on Γ1,

∇u · n ≡ 0 on Γ2.

(1.1)

Here, u is the state variable. We assume that Ω = (0, 1)2 and that both the diffusion α
and the advection field ν are constant. Additionally, the composite boundary is such that
Γ1 ∪ Γ2 = ∂Ω, with n being the outward normal unit vector to the boundary. We let the
source m ∈ L2(Ω) be the inversion parameter that we seek to estimate.

One can formulate an inverse problem in the deterministic and Bayesian settings. The
deterministic formulation seeks to find a representation of the inversion parameter that re-
produces the data most accurately under the governing model. On the other hand, the
Bayesian approach is used to construct a statistical description of the parameter that ac-
counts for uncertainties in parameter estimation. Realizations of the Bayesian posterior law
may be propagated through the model resulting in a probability distribution on the state
variable. In both approaches, we must contend with noisy data and the ill-posedness of the
problem, due to sparse measurements and smoothing properties of the forward mapping.
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In what follows, we discuss both deterministic and Bayesian formulations of the inverse
problem, before tackling the OED problem of determining an optimal sensor placement. We
will see that the OED problem is built on the Bayesian inverse problem. Thus, the under-
standing and manipulation of the components of the Bayesian formulation is required before
we can develop the OED problem formulation and its solution methods. However, before
discussing the matter of uncertainty in parameter estimation, it is instructive to consider
the deterministic setting. This will allow us to build the key operators and components
required in subsequent problems. Once this is done, converting the deterministic approach
into the Bayesian formulation is straightforward, in the case of linear inverse problems.

1.2. Related work. The field of Bayesian inverse problems and optimal experimental
design contain many open areas of research. A major motivation for the development of these
fields are the numerous practical engineering and scientific applications. The formulation
and solution of such problems requires an assortment of theoretical and computational tools
at one’s disposal. This is the reason why research pertaining to Bayesian inverse problems
and OED necessitates rigorous knowledge of underlying theory and efficient implementation
of algorithms. While the present work focuses on linear Bayesian inverse problems and
A-optimal designs, there exists extensive works on design of nonlinear Bayesian inverse
problem; see e.g., [9, 5, 1, 12].

The works [4, 2, 3], which concern OED for Bayesian linear inverse problems are closely
related to the present work. In particular, [2] provides an accessible introduction on finite
dimensional Gaussian random variables, linear inverse problems in the finite dimensional
setting, and Bayes Risk, which we discuss later. The paper [3] provides a detailed perspective
on OED for Bayesian linear inverse problems in Hilbert space with focus on Bayesian A-
and D-optimal designs. The article [4] details a scalable approach for tackling the linear
OED problem in a manner suitable for HPC architectures.

1.3. Finite element method and the observation operator. We discretize (1.1) in
the space defined by Vn := span{φi(x)}ni=1, which is the space spanned by the finite-element
(FE) basis {φi}ni=1. For all computations, we choose φi to be Lagrange nodal-basis-functions.
For v ∈ L2(Ω), FE coefficients can be obtained such that

v ≈ vh :=

n∑
i=1

viφi.

In particular, the discretized inversion parameter is given by mh =
∑
imiφi. In a Bayesian

formulation, we use measurement data in conjunction with prior knowledge about the in-
version parameter to estimate the vector m = [m1 m2 · · · mn]> of FE coefficients of mh.

Let d ∈ Rd denote the vector of measurement data, collected at locations {xj}dj=1,
where xj ∈ Ω. Data are often collected at uniform or random sensor locations. This is
sufficient for demonstrating the mechanics of the inverse problem and solution methods,
but may be suboptimal in applications. We discuss this later when formulating the optimal
experimental design problem, which concerns placing sensors in “optimal” locations.

We now introduce the first of several operators that appear in formulation of the inverse
problem. Let B : L2(Ω) → Rd be the observation map. This operator takes a function
in L2(Ω) and produces measurements at the locations described by {xj}. Note that the
observation map does not account for noise when collecting data.

2. Deterministic inversion. Much of the problem structure developed in the de-
terministic formulation will translate to the Bayesian setting. For this reason, various
constructs are carefully built in the following section. In a deterministic formulation, we



formulate the inverse problem as that of finding an m that minimizes

J (m) :=
1

2
‖Bu− d‖22 +R(m; γ), (2.1)

where u is obtained by solving (1.1). The first term of the functional is referred to as the
data-misfit. This term is a measure of the error between model observations and data d.
It is assumed that d = Bu+ η, where the additive noise is normally distributed with mean
zero and covariance σ2I. That is, η ∼ N (0, σ2I). Note that this assumes uncorrelated
measurements. The second term of J is a regularization term. For illustration in this
section, we consider an L2-regularization, R(m; γ) := γ

2 ‖m‖
2
L2(Ω). This term is required to

manage the ill-posedness of the problem. The deterministic inverse problem maybe solved
numerically in one of the following ways:

1. Use variational methods to form a system that results in m∗ ∈ L2(Ω), the minimizer
of J . Then, discretize this system to obtain the FE coefficients m∗, which uniquely
characterize the approximation m∗h of m∗.

2. Discretize (1.1) and (2.1), and then use variational methods to obtain a system that
uniquely determines m∗, the FE coefficients of m∗n.

Approach 1 is referred to as the optimize-then-discretize method (OTD), and 2 as discretize-
then-optimize (DTO) approach. Due to the linearity of the present inverse problem, both
OTD and DTO methods result in the symmetric positive definite system:

(F∗F + γI)m = F∗d. (2.2)

As discussed below, F is the discretized parameter-to-observable map and F∗ is its adjoint.

2.1. Discretization issues. To define the adjoint operator F∗ in (2.2), we need to
pay close attention to the inner product on the discretized inversion parameter space. This
discretized space is Rn equipped with the following mass-weighted inner product:

(u,v)M = vTMu,

where M is the finite element mass matrix, Mij =
´

Ω
φiφj with i, j ∈ {1, . . . , n}. Note that

this mass weighted inner product is none but the discretized L2(Ω) inner product. To see
this, let (·, ·) be the L2(Ω) inner product and let uh and vh be in Vn. Then,

(uh, vh) =

 n∑
j=1

ujφj ,
n∑
i=1

viφi

 =

n∑
i,j=1

viuj(φi, φj) = vTMu = (u,v)M.

Note that u and v are the vectors of FE coefficients corresponding to uh and vh, respectively.
In what follows, we let RnM denote the inner product space Rn equipped with the mass-
weighted inner product.

Next, we describe the remaining components of (2.2), the matrices F and F∗. The map
F : RnM → Rd is a discretization of the parameter-to-observable map F : L2(Ω) → Rd and
F∗ : Rd → RnM is a discretization of the adjoint map F∗ : Rd → L2(Ω). Additionally, denote
F̄ : RnM → RnM as the discretization of the parameter-to-state map F̄ : L2(Ω) → H1(Ω).
Obtaining these matrices (or their applications) is discussed shortly below. The last operator
we discretize is the observation map. Denote B as the discretization of the observation
operator B. It is important to note that constructing this operator is not only problem-
dependent, but also dependent upon the selected software. A reasonable approach to extract
a measurement value from a function v ∈ Vn at a point x ∈ Ω is to numerically integrate
v against a sufficiently scaled Gaussian-like function that approximates the δ distribution



centered at x. Doing so is equivalent to obtaining a local average of v about the point
x. This process is linear and a single matrix B : RnM → Rd can perform simultaneous
observations, approximating the action of B.

Following a DTO strategy, the discretized objective functional with L2-regularization is

J (m) :=
1

2
‖Bu− d‖22 +

γ

2
mTMm, (2.3)

where u solves the discretized state equation, which we discuss next. Define the matrix
Aij := α(∇φi,∇φj) + (φi,ν · ∇φj). The discretized state equation is described as follows:

vTAu = vTMm, ∀v ∈ RnM ⇐⇒ Au = Mm. (2.4)

This system gives an explicit representation of the discretized parameter-to-state and parameter-
to-observable maps:

parameter-to-state: F̄ := A−1M,
parameter-to-observable: F := BF̄.

In practice, an application of F (a state solve) requires solving a linear system. Using F, J
can be redefined in terms of m:

J (m) :=
1

2
‖Fm− d‖22 +

γ

2
mTMm. (2.5)

It can be shown that ∇J (m) = 0 results in (2.2).

2.2. Computational results. Computing the minimizer of J requires implementing
routines that perform applications of the forward and adjoint operators, F and F∗ and
then solving a symmetric positive definite (SPD) system using a Krylov iterative method.
This process is matrix free. It does not require building the forward and adjoint operators,
which is an important consideration in large-scale problems. The expressions that define the
forward/adjoint equations can be assembled using FE software. We use the FEinCS 2019
library [6] in Python for discretization, PDE solves, and assembly of relevant matrices. In
the case of the steady-state convection/diffusion model, applications of the forward/adjoint
operators require solving linear systems.

Performing deterministic inversion is equivalent to minimizing (2.3) over RnM. Once
the FE coefficients that minimize J are obtained, the expansion of the minimizer over Vn
may be plotted and relative error calculated. Hence, the true parameter may be compared
with its approximation. We implement an equally spaced FE mesh of size n = n2

x with k2

uniformly distributed interior sensors. The sub-boundary Γ2 is the x = 1 side of the unit
square. Taking ν = [1.5, 0] provides “flow” out of the boundary. In the present study, the
true parameter is given by mtrue(x) = f(x) + g(x), where

f(x) =

{
1, x ∈, R
0, x /∈ R

and g(x) = 1.5

{
− 1

2(0.15)2

[
(x1 − 0.5)2 + (x2 − 0.5)2

]}
,

and R is the rectangle R(x) = [0.125, 0.5] × [0.375, 0.625]. Physical and problem-specific
parameters are provided in the Table 2.1. Note that 152 uniformly distributed sensors are
selected. Results are obtained with synthetic data such that ‖d − Bu‖2/‖d‖2 = 0.0016.
This fraction is viewed as the relative magnitude of the noise.

Parameter nx k α γ
Value 20 15 0.06 0.007

Table 2.1: Parameters for the deterministic inversion problem.



Fig. 2.1: The true parameter mtrue used to generate data (left) and the corresponding state
solution u (right).

We see that the true parameter has been advected in the positive x-direction, resulting
in outflow. In addition to this, the amplitude of the parameter is decreased by the diffusive
properties of the model. Performing the inversion, we see the estimate captures the features

Fig. 2.2: Solution to the deterministic inverse problem.

of the true parameter relatively well. Quantitatively, a mass weighted relative error of 0.0790
is achieved. We use the mass weighted inner product to measure the relative error since
we are concerned about the error in approximating the true solution in the space Vn. The
true parameter has sharp edges, which are notoriously difficult to reconstruct in diffusion
models. Nonetheless, all major features in mtrue are present in the reconstruction.

3. Bayesian inversion. Here, we discuss the Bayesian formulation of the inverse prob-
lem under study. The objective of the Bayesian inverse problem is to obtain a probabilistic
description of the inversion parameter from noisy data. The present discussion is based



on the developments in [7], which outlines a computational framework for solving infinite-
dimensional Bayesian linear inverse problems. For theory of Bayesian inverse problems in
the infinite-dimensional setting, the readers can refer to [10].

Recall the infinite-dimensional representation of the parameter-to-observable map F :
L2(Ω)→ Rd. It is assumed that noise is additive and Gaussian with mean zero and covari-
ance denoted by Γnoise:

d = Fm+ η, η ∼ N (0,Γnoise). (3.1)

Note that for the present example, the parameter-to-observable map is a continuous linear
transformation. The Bayesian formulation entails forming a prior law—a prior statisti-
cal description of the inversion parameter informed by whatever information is available.
The prior, in conjunction with the data-likelihood, the law of the data conditioned on the
inversion parameter, facilitates the use of Bayes’ Theorem. Assuming a Gaussian prior, ap-
plication of Bayes’ theorem implies that the posterior law, for the present inverse problem,
is Gaussian with analytic expressions for the posterior mean and covariance. In this case,
the posterior mean coincides with the maximum a posteriori probability (MAP) point. This
and the posterior covariance are sufficient in describing the posterior law. Before we provide
the formulas for the MAP point and the posterior covariance, we discuss the definition of a
suitable Gaussian prior in the present infinite-dimensional setting.

3.1. The prior. The prior mean, given by m0 ∈ L2(Ω), may be informed by problem-
specific information. When no such information is available, the prior mean may be set as
the zero function. This is our decision for all subsequent computations. A clever choice
of prior covariance operator is the square of the solution operator of an elliptic PDE. This
provides advantageous smoothing properties and the important property of being trace-class,
positive, and selfadjoint. Additionally, the prior covariance being the square of the inverse of
the elliptic operator makes applications of the square root of the covariance straightforward
[7]. Let s ∈ L2(Ω) and a1, a2 > 0. Then, the mentioned elliptic PDE is

−a1∆m+ a2m = s, in Ω,

∇m · n = 0, on ∂Ω.

This corresponds to the weak form

a1(∇m,∇p) + a2(m, p) = (s, p), ∀p ∈ H1(Ω). (3.2)

If the operator A is such that Am = s, then the solution operator of the PDE is A−1. The
prior covariance is defined to be the square of this: C0 = A−2. It is also important to note
the role of the parameters a1 and a2, responsible for the behavior of the prior law. Here,
the prior law describes a Gaussian random field, whose correlation length and pointwise
variance are controlled by a1 and a2, respectively.

For computational purposes, we need the FE coordinates of the prior mean, m0, and
the discretized prior covariance, Γpr. To arrive at the prior covariance, we discretize (3.2)
with regards to the FE basis. Define the matrix K according to Kij = (∇φi,∇φj). Then,
the discretized elliptic equation is given by

M−1(a1K + a2M)m = s.

Additionally, define E := M−1(a1K + a2M), then it can be shown that E and E−1 are
selfadjoint with respect to the mass-weighted inner product (·, ·)M. Using the FE coefficients
of the prior mean and the discretized elliptic operator, we introduce the prior distribution:

πpr(m) ∝ exp

{
−1

2
‖E(m−m0)‖2M

}
. (3.3)



This also indicates Γpr := E−2.

3.2. The likelihood. The likelihood law provides a probabilistic description of the
data conditioned on the inversion parameter. Since the noise is Gaussian with mean zero,
the likelihood is also Gaussian:

πlike(d|m) ∝ exp

{
−1

2
‖Fm− d‖2

Γ−1
noise

}
. (3.4)

The fact that d|m ∼ N (Fm,Γnoise) follows from the independence of m and η. We
also note the role of the noise covariance by viewing the formula above. In the case of
uncorrelated measurements, or when Γnoise = σ2Id, sensor locations corresponding to high-
noise measurements will not be influential. This is due to the fact the diagonal entry of
Γ−1

noise corresponding to the high-noise measurement will effectively be zero. We will return
to this idea later in the OED discussion.

3.3. The posterior. Since the prior and likelihood are given in discretized form,
Bayes’ Theorem can be applied as follows:

πpost(m) ∝ πlike(d|m)πpr(m). (3.5)

By substituting the expressions for the likelihood and prior density in the above formula and
some algebraic manipulations, we can describe the posterior law explicitly: the posterior
law is a Gaussian with mean mmap and covariance Γpost defined according to

mmap = Γpost

(
F∗Γ−1

noised+ Γ−1
pr m0

)
, Γpost =

(
F∗Γ−1

noiseF + Γ−1
pr

)−1
. (3.6)

It is important to note several details about the posterior information:

• Applications of Γpost require a linear solve.
• Obtaining mpost requires a linear solve.
• Defining Γnoise = σ2Id simplifies calculations.

3.4. Computational considerations. Being able to solve the Bayesian inversion
problem is essential to constructing the OED problem. For this reason, it is prudent to
perform various theoretical verifications such as verifying the implementation of the adjoint
operator and the gradient and Hessian expressions. To make calculations as fast as possi-
ble, it is necessary to use suitable matrix factorizations and matrix-free approaches when
available. Doing so vastly decreases computational time and results in an approach suitable
for large scale problems (it may be practical to impose some computational budget).

To illustrate some of the computational issues, we consider the computation of the MAP
point. This is done by solving the system

Γ−1
postm = F∗Γ−1

noised+ Γ−1
pr m0

using a Krylov iterative approach. To enable this, we create a routine that applies Γ−1
post

to a vector. An application of Γ−1
post requires both a state and adjoint solve, as well as a

multiplication of Γ−1
pr with a vector. Matrix-free Krylov iterative methods are essential for

obtaining the MAP point quickly. Due to SPD system structure, we rely on the (precondi-
tioned) Conjugate Gradient (CG) for solving the resulting linear system. For more details
on computational aspects of solving Bayesian linear inverse problems, see [7].



3.5. Computational results. We perform an illustrative computational study in the
Bayesian framework as we did in the deterministic setting. The same discretization method,
boundary conditions, advection, and true parameter are used. Doing so will allow for
the comparison between the minimizer obtained in the deterministic formulation and the
Bayesian MAP point. A significant difference between the two problems, related to our
discussions of OED, is that measures for the quality of the reconstructions maybe obtained
naturally in the Bayesian setting. Namely, we may consider various ways of characterizing
the uncertainty in the estimated parameters. For example, the trace of the posterior covari-
ance quantifies the average variance of the posterior distribution. We can also study the
percentage of average variance reduction from performing inversion. This is represented by
the quantity ∆Var := 100 · (1− tr[Γpost]/tr[Γprior]). We note that for large-scale problems,
computing the trace directly is inefficient. For this reason, a randomized trace estimator is
used. This will be discussed further in Section 4.

In the present example, we use a Gaussian prior as described in Section 3.1. Regarding
the noise model, we assume an additive Gaussian noise model, and let the noise covariance
be of the form Γnoise = σ2Id. We summarize the parameters defining the various aspects of
the Bayesian inverse problem under study in Table 3.1.

Parameter nx k α a1 a2 σ2

Value 20 15 0.06 0.01 0.08 0.001

Table 3.1: Parameters for the Bayesian inversion problem.

Fig. 3.1: The true parameter mtrue used to generate data (left) and mmap (right).

Results are obtained with synthetic noise level is set such that ‖d−Bu‖2/‖d‖2 = 0.0021.
Qualitatively, the MAP point captures the major features of mtrue. The relative error
between the true parameter and MAP point is calculated to be 0.0777. Note that this
is in par with our results from deterministic inversion. Regarding uncertainty reduction,
we observed an average variance reduction of ∆Var = 99.8692%. A variance reduction of
this magnitude should not be expected in real applications. The reasons for such a large
uncertainty reduction can be attributed to a “wide prior” and dense sensor network. By a



“wide prior” we mean that the parameters governing the prior (a1 and a2) are selected such
that the prior has a large average variance.

4. Optimal experimental design. The purpose of solving the OED problem is to
obtain optimal sensor locations in which to collect data. In this context, a design is the
placement of measurement locations within the domain Ω and optimality is determined
through a measure of uncertainty associated with the inversion parameters. Our overall
strategy aligns closely to that in [4]. Specifically, we consider Bayesian A-optimal designs
that seek to minimize the average posterior variance.

Let S := {xj}Ns
j=1, xi ∈ Ω, be the set of possible sensor locations, otherwise known

as the candidate sensor locations. To each location xj , we assign a weight, wj . If w =
[w1, · · · , wNs ]T is the vector containing the design weights, the optimal design is obtained
by minimizing the OED functional

Ψ(w) := Θ(w) + Φ(w;β), w ∈ [0, 1]Ns . (4.1)

The functional Θ : RNs → R is referred to as the design criterion. Deciding upon a
criterion is typically problem-dependent. Specifically, the choice of criterion depends upon
problem structure, the chosen definition of uncertainty, and related quantities of interest.
The functional Φ : RNs ×R+ → R is the penalty function whose role is to promote sparsity.
Increasing the penalty parameter β results in sparser designs.

4.1. The design criterion. To arrive at a design criterion, the design weights must
be introduced into the Bayesian inversion problem. This is done by defining a suitably
weighted data-likelihood. Let W ∈ RNs×Ns be a diagonal matrix such that diag [W] = w
and Γnoise = σ2INs

for all subsequent calculations. Then,

πlike(d|m;w) ∝ exp

{
−1

2
‖W1/2(Fm− d)‖2

Γ−1
noise

}
. (4.2)

Note that in the case when W = INs
, the original likelihood (3.4) is obtained. In the

context of binary weights, this is equivalent to collecting data at all possible measurement
locations. In the case of nonbinary weights, we view (4.2) as placing bias upon specific sensor
locations. Candidate locations xj corresponding to larger wj indicate these locations are
highly influential in terms of reducing uncertainty. The corresponding “weighted” posterior
covariance operator is given by

Γpost(w) =
(
σ−2F∗WF + Γ−1

pr

)−1
. (4.3)

It is worth noting that the data d does not appear in the posterior covariance. In the present
study, we focus on the Bayesian A-optimality criterion:

Θ(w) := tr[Γpost(w)]. (4.4)

For the present linear Gaussian problem, this A-optimality criterion is equal to the Bayes
Risk, which is an average mean square error of the posterior mean; see e.g., [2]. Thus, under
our provided assumptions, reducing the average posterior variance corresponds to reducing
parameter MAP estimation inaccuracy in an average sense. This will be revisited in our
computational studies later in this section.

4.2. Penalty of the OED objective. As discussed, the role of the penalty term is
to enforce sparsity in sensor placement. For simplicity, we consider an `1-norm penalty:

Φ(w) := β‖w‖1. (4.5)



This choice of Φ is convex. However, wj may take on any value in [0, 1]. This means
that the w∗ that minimizes Ψ is not a binary vector. Our aim is to modulate β such
that a desirable number of weights are nearly zero. Sensor locations corresponding to the
remaining weights comprise the (approximate) optimal design. Since w ∈ [0, 1]Ns , the
gradient is computed as ∇Φ(w) = β1. This will be necessary for utilizing a gradient-based
optimization routine with box constraints in order to solve the OED problem. Although
our choice of penalty function is sufficient for demonstration and application of the OED
problem, more sophisticated penalty approaches exists. For example, in [4] a sequence of
penalty functions is used to approximate the `0-norm.

4.3. Evaluating the criterion and its gradient. As seen in the previous section,
evaluating the penalty and its gradient for w ∈ RNs is straightforward. It is not the same
case for the criterion. We outline a matrix-free approach, which is based on the developments
in [4]. We begin by recalling that for a given weight vector w, obtaining the MAP point is
equivalent to minimizing

Ĵ (m;w) =
1

2σ2
‖W1/2(Fm− d)‖2 +

1

2
‖Γ−1/2

pr (m−m0)‖2M. (4.6)

A simple calculation show that the Hessian of Ĵ is

H(w) =
1

σ2
F∗WF + Γ−1

pr .

Defining the Hessian of the data-misfit term as Hmisfit(w) := 1
σ2 F∗WF we write,

H(w) = Hmisfit(w) + Γ−1
pr .

Thus, the posterior covariance can be defined in terms of the Hessian as

Γpost(w) = H−1(w).

Building the posterior covariance explicitly in order to compute the trace is not scalable.
We will see shortly that having access to applications of H−1(w) is sufficient for estimating
Θ(w) = tr[Γpost(w)] and its gradient. With Monte-Carlo methods, one can estimate the
trace of an SPD matrix A:

tr[A] ≈ 1

Ntr

Ntr∑
i=1

(yi,Ayi)2 ,

where yi are independent random vectors. It is not as simple as applying this concept to
Θ(w), given that an evaluation of Θ at the point w should approximate the trace of the
infinite-dimensional representation of Γpost. For this reason, it is necessary to appropriately
scale the random vectors yi. With this idea, we redefine the criterion in terms of its trace
estimation:

Θ(w) :=
1

Ntr

Ntr∑
i=1

(
zi,H

−1zi
)
M
, for zi := M−1/2yi. (4.7)

See [4] for a derivation of the mass-weighted trace estimator.
Next, the gradient can be derived. The following equations and assumptions will be

used:
1. ∂H−1(w)

∂wj
= −H−1(w)∂H(w)

wj
H−1(w)



2. H−1(w) is M-symmetric

3. ∂Hmisfit(w)
wj

= σ−2F∗eje
T
j F, where ej is the jth standard unit vector in RNs .

With the above assumptions and defining qi = H−1zi, we have that

∂Θ(w)

∂wj
=

1

Ntr

∂

∂wj

Ntr∑
i=1

(
zi,H

−1(w)zi
)
M

= − 1

Ntr

Ntr∑
i=1

(
zi,H

−1(w)
∂Hmisfit(w)

∂wj
H−1(w)zi

)
M

= − 1

Ntr

Ntr∑
i=1

(
qi,

∂Hmisfit(w)

∂wj
qi

)
M

.

Note that ∂H(w)
∂wj

= ∂Hmisfit(w)
∂wj

was used. Denote di = Fqi then(
qi,

∂Hmisfit(w)

∂wj
qi

)
M

=
1

σ2

(
qi,F

∗eje
T
j Fqi

)
M

=
1

σ2

(
Fqi, eje

T
j Fqi

)
2

=
1

σ2

[
d

(j)
i

]2
.

Finally, the gradient of Θ can be defined:

∂Θ(w)

wj
= − 1

σ2Ntr

Ntr∑
i=1

[
d

(j)
i

]2
, j = 1, · · ·Ns. (4.8)

4.4. Computational considerations. The previous section provides enough infor-
mation to implement a gradient-based optimization algorithm for the purpose of minimizing
Ψ(w). However, a practical implementation for large-scale problems is rather involved. See
[4] for details. The implementations in the present study are simplistic and are intended for
illustration. First, F, F∗, and Γ−1

pr are explicitly constructed. (In practical implementations,
we need to implement routines that provide applications of the forward/adjoint operators.)
A gradient-based optimization routine is then selected. In our implementations, we use the
limited memory Broyden–Fletcher–Goldfarb–Shanno with bound constraints (L-BFGS-B)
algorithm as implemented in the SciPy library [11] in Python. The algorithm was originally
introduced in [13].

For a given w, qi are computed via SPD solves. In optimizing Ψ(w) = Θ(w)+Φ(w;β),
evaluations of Θ and its gradient are computed as described in the previous section.

Due to our choice of the penalty approach, the computed optimal design will, in gen-
eral, be a nonbinary vector. However, the `1-penalty ensures that some of the weights are
nearly zero. In our numerical studies, we consider these weights as zero and select sensors
corresponding to larger weights.

4.5. Computational results. In application, the number of sensors desired is likely
to be a small number. The intuition behind this is as follows: if the number of sensors is
such that the physical domain is saturated, moving the sensors around is unlikely to make
a notable difference. On the other hand, when we have access to only a few sensors, their
placement is crucial. For this reason, in our computational studies we seek Designs that are
comprised of relatively few sensors.

Our results were obtained with a FE-mesh of size n = n2
x. The Neumann boundary Γ2

represents the y = 0 and x = 1 sides of the domain, and the vector-field ν = [1.5,−1.5]
produces outflow in the Southeast direction. Data is generated such that ‖d−Bu‖2/‖d‖2 =



0.006. Lastly, the sparsity parameter β was selected to produce relatively few sensors and
the true parameter is given by

mtrue(x) = 8 exp

{
− 1

2(0.17)2

[
(x1 − 0.5)2 + (x2 − 0.5)2

]}
.

Parameter nx k α a1 a2 σ2 β
Value 20 18 0.06 0.2905 0.151 0.1 0.2

Table 4.1: Parameters for the OED problem.

Fig. 4.1: The true source used to generate data: mtrue.

The parameters in Table 4.1 result in an optimal design consisting of 9 sensor locations.
We compare the OED result to results obtained using 9 uniform sensors located on the
interior of Ω, and 9 randomly selected locations. The average variance reduction of the

Fig. 4.2: The optimal design consisting of 9 sensors is depicted (left), a design of 9 uniform
sensors (middle), and a design randomly distributed design (right). The designs are plotted
over the state solution generated by the true parameter, mtrue.

OED, uniform, and random solutions are 86.6488%, 78.4059%, and 73.0988% respectively.



It is important to highlight that all observed random placements were sub-optimal. Designs
are plotted over the state solution. In this context, the optimal design is not surprising. We
would not expect to see measurement locations in portions of the region devoid of dynamics,
such as the Northwest corner of the plots. This is why the optimal placement is symmetric
about the outflow direction. It is noteworthy that the random sensors performed poorly
due to placement of sensors in uninformative locations and that the uniform sensors were
much better than random (in most cases).

Next, we study the results of sensor placement as the number of desired sensors changes.
As mentioned before, optimal sensor placement is critical when only a small number of sen-
sors are used. On the other hand, as the number of sensors grow, even a random placement
of sensor maybe be effective. This is studied in Figure 4.3. In that figure, each point cor-
responds to a design consisting of k randomly placed sensors. This random design is used
to generate synthetic data for the Bayesian inverse problem using a fixed mtrue. We then
compute the relative error between the true parameter and MAP point and the average
posterior variance (i.e., the A-optimal criterion). The relative error is then plotted against
the A-optimal criterion. For each value of k, 15 different randomly generated designs are
considered, resulting in clusters of size 15 for each value of k. As we increase k, the vari-
ance of the clusters decreases and the clusters tend towards the origin. This indicates that
random designs with a large number of sensors behave similarly and are generally effective
in reducing posterior uncertainty and producing a good quality MAP point.

Fig. 4.3: Five clusters corresponding to different numbers of sensors. For example, each
dot in the k = 2 cluster corresponds to a random design consisting of 2 sensors. Using
a fixed mtrue, synthetic data of length 2 is generated and the Bayesian inverse problem is
solved. The mass weighted relative error between the MAP point and true parameter are
then plotted against the posterior average variance.

The trend of the clusters in Figure 4.3 is generally linear. This is not a coincidence, but
a consequence of the relationship between Bayes Risk and the posterior covariance. Take
data y and a Gaussian prior with law µpr = N (mpr,Γpr). It can be shown that under the
additional assumptions of a linear model and additive-Gaussian noise, the average mean
square error between m and my

map (Bayes Risk), is equal to the trace of the posterior



covariance [8, 2]. Specifically, if we denote Bayes Risk as Risk(my
map), then

Risk(my
map) := Eµpr

Eµlike

{
‖m−my

map‖22
}

=

ˆ ˆ
‖m−my

map‖22 πlike(y|m)dy µpr(dm) = tr[Γpost]. (4.9)

We have simulated this theoretical expectation in a simple inverse problem governed by a
one-dimensional heat equation; see Figure 4.4.

Fig. 4.4: Five clusters corresponding to different numbers of sensors.

In Figure 4.4, we see the theoretically expected result that the trace of the posterior
covariance operator equals Bayes Risk. In this study, Bayes risk is computed via sampling:
prior samples are used to generate noisy data required to solve the inverse problem, and
the error in the MAP point is averaged over these samples. We see that the spread of the
clusters corresponding to random designs of size k decrease as k grows. As in Figure 4.3,
the clusters also tend towards the origin. This is yet another demonstration of the fact that
when we have a large number of sensors, optimizing their placement is less consequential.

5. Conclusions. In our brief study we explored mathematical and computational as-
pects of solving Bayesian linear inverse problems and optimal sensor placement for these
class of problems. To make the presentation accessible, we presented concepts in increasing
level of complexity, starting from deterministic inversion and building up to formulation of
an OED problem. The driving application for our studies was volume source inversion in
an advection diffusion equation in a two-dimensional geometry. A key motivation for the
present study was to demarcate computational techniques that allow for OED problem in
the linear setting to be solved in a scalable way in an HPC setting.

Our most insightful computational results were in the case of the OED problem. We
compared our optimal design against uniform and random designs of the same size, observ-
ing which design was most successful in reduction of average variance. It was seen that the
optimal design performed better than the uniform design, which performed better than the
random design. Obtaining optimal designs in the context of our problem lead to further dis-
cussion on the relationship between MAP estimation error and average variance reduction,
in terms of the number of sensors used. We numerically demonstrated that as the size of the



design increases, the MAP point estimation error and average variance also decrease. This is
intuitive and indicates that a practitioner may not need to solve an OED problem if sensor
budget is not an issue. On the other hand, if only a few sensors are available, then optimal
sensor placement is crucial. Additionally, we numerically demonstrated a theoretical result
regarding equivalence of the standard A-optimality criterion and the Bayes Risk.
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