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Abstract We derive minimal conditions on a symmetry group of a linearly elastic material
that implies its isotropy. A natural setting for the formulation and analysis is provided by
the group representation theory where the necessary and sufficient conditions for isotropy
are expressed in terms of the irreducibility of certain group representations. We illustrate the
abstract results by (re)deriving several old and new theorems within a unified theory.
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1 Introduction

In the linear theory of elasticity, the elasticity tensor C (at a material point x) is a linear
map (self-adjoint in the case of hyperelasticity) on the space Sym of symmetric tensors. The
strain E and stress S at x are related through S = C[E]. The material at x is isotropic if

QC[E]QT = C[QEQT ] for all E ∈ Sym, Q ∈ Orth, (1)

where Orth is the set of all orthogonal linear transformations of the space. The identity in (1)
implies that C necessarily is of the form

C[E] = 2µE +λ (trE)I, (2)

where the scalars µ and λ are the Lamé moduli at x. This is a classic result, going back to
Cauchy and Navier in 1823. See the footnote to equation (1.1) in [26] (or its reprint [27])
for a brief historical survey. The “canonical” modern proof is a corollary to the Ericksen-
Rivlin representation theorem for general (not necessarily linear) isotropic tensors; see [29,
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page 33] and [9, page 196]. Nonetheless, novel and insightful proofs continue to appear
to this day. The articles [8,19,3,6,2,7,17,23,30,4,13,18,16] (in the chronological order)
provide a (non-exhaustive) sampling of this and related results that have appeared in this
journal between 1974 and 2006.

Our objective in this article is to see to what extent can the condition “for all Q ∈ Orth”
in (1) be relaxed while preserving the conclusion of isotropy. Specifically, let G⊆Orth be a
symmetry group for the material in the sense that,

QC[E]QT = C[QEQT ] for all E ∈ Sym, Q ∈ G. (3)

We ask: Under what minimal conditions on G does (3) imply (2)? We show that group
representation theory provides the natural framework to answer this question. Theorem 1 of
Section 7 establishes a connection between Schur’s Lemma in group representation theory
and symmetry groups in elasticity and shows that irreducibility of certain representations of
G implies the isotropy of C in n-dimensional hyperelasticity. Theorem 2 provides a converse.
Theorems 3 and 4 extend Theorem 1 to the non-hyperelastic and polar media, respectively,
in three dimensions.

We provide several illustrations of the applications of these theorems. In Section 8, we
explain the connection between Theorem 1 and the classical representation for isotropic
elasticity tensors as in equation (2). This essentially amounts to verifying irreducibility of
certain representations of Orth, which is implied by a result in [19]. In Theorem 7 of Sec-
tion 9 we show that in plane hyperelasticity, the symmetry group generated by a single
generic rotation implies isotropy. Here “generic” means a rotation other than an integer
multiple of π/2. In the non-hyperelastic case one needs a symmetry group generated by a
generic rotation and a reflection; see Theorem 8. In Theorem 10 of Section 10 we reproduce,
in the context of group representations, a result obtained in [11], whereby symmetry under
a group generated by a pair of generic rotations in three dimensions implies isotropy. The
precise meaning of “generic” is given in Definition 1 of Section 10. In Theorem 11 of Sec-
tion 11, we employ a variant of Schur’s Lemma to generalize Theorem 10 to fourth order
tensors C defined on the space of all second order tensors (not necessarily symmetric). This
is related to questions studied in [6], [2], and [23].

We have strived to present the arguments clearly, and avoid undue generality lest it
obfuscate the underlying ideas. For this reason, we have restricted Theorem 1 to the hypere-
lastic case but we present remarks and extensions, where instructive, to the non-hyperelastic
case throughout the article. In this connection, it is worth nothing, cf. Truesdell [28, Lec-
ture 27], that in isothermal thermoelasticity, the second law of thermodynamics implies
hyperelasticity. Carroll [1] brings this out by constructing a rather simple non-hyperelastic
material that generates net excess energy in a cyclic process.

2 Motivation for this analysis

In the elasticity literature, it is common to limit the symmetry group G in (3) to the crystallo-
graphic groups. There are, however, interesting situations where non-traditional symmetries
arise. One such instance is in the case of the homogenized limit of media with random mi-
crostructures. For extensive surveys of basic principles and contemporary research on such
media see [21] and [25].

Consider, for instance, a two-dimensional random medium that fills the entire plane. The
material consists of of a matrix with embedded granules. Both the matrix and granules are
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homogeneous and isotropic—think of glass beads embedded in a rubber sheet. The gran-
ules are identical regular pentagons oriented such that their edges are pairwise parallel. The
centers of the pentagons are distributed randomly in the plane according to a Poisson distri-
bution, that is, the probability of having k pentagon centers in a region is ake−a/k!, where
a is proportional to the area of the region. Such a material has a five-fold symmetry in the
probabilistic sense: any realization and its 2π/5 radian rotation are equally likely. Let Ω be
the probability space corresponding to all such realizations. Thus, a point ω in Ω represents
a particular realization. Let Cx,ω be that realization’s elasticity tensor at the point x in space.
For any ε > 0 define a scaled material with the elasticity tensor C(ε)

x,ω = Cx/ε,ω . As ε → 0,
we obtain a family of elastic materials with progressively finer microstructure. It is possible
to show (see [22,15]) that under reasonable assumptions on the nature of the probabilistic
distribution of Cx/ε,ω , the solution uε of the boundary value problem of elasticity on any
bounded domain B:

div
(
C
(ε)
x,ω
[
∇uε(x,ω)

])
+ f (x) = 0 on B,

uε = 0 on ∂B

converges (in a suitable sense), as ε → 0, to the solution u0 of the limiting problem:

div
(
C(0)[

∇u0(x)
])

+ f (x) = 0 on B,

u0 = 0 on ∂B,

where C(0) is a constant elasticity tensor, called the homogenized limit of the family C
(ε)
x,ω .

It is possible to show that (see [15]) the homogenized limit, C(0), inherits the symmetry
properties of Cx,ω . Thus the five-fold symmetry of Cx,ω implies that

QC(0)[E]QT = C(0)[QEQT ] for all E ∈ Sym, Q ∈ G5 (4)

where G5 is the group corresponding to 2π/5 radian rotations in the plane. Note that this
symmetry group is not a crystallographic class. It is a consequence of Theorem 7 of Section 9
that the identity (4) implies that C(0) is isotropic.

3 Notation

Throughout this article we use the following notations and conventions. We write X for
a generic finite-dimensional vector space equipped with an inner product 〈·, ·〉. The corre-
sponding scalar field may be real or complex; we will be explicit when it does matter. We
write Lin(X ) for the space of linear operators on X . The general linear group GL(X ) of
X is the group of all invertible operators in Lin(X ).

We let I denote the identity operator in Lin(X ), thus Ix = x for all x ∈X , and we set

Sph(X ) = span{I}=
{

L ∈ Lin(X ) : L = αI for a scalar α
}
.

To any A∈ Lin(X ) there corresponds a unique adjoint A∗ ∈ Lin(X ) such that 〈Ax,y〉=
〈x,A∗y〉 for all x,y ∈X . A map A is self-adjoint if A∗ = A. A map A is unitary if AA∗ = I.
If X is a real vector space, the adjoint of A is denoted by AT , and unitary maps are called
orthogonal maps. Let Orth(X ) be the set of all orthogonal maps on X .
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We write Sym(X ) for the subspace of self-adjoint maps in Lin(X ). The inner product
〈·, ·〉 of X induces a natural inner product on Lin defined by 〈〈A,B〉〉 = tr(A∗B) = tr(AB∗),
where tr is the trace operator.1 Let us note that trA = 〈〈I,A〉〉 for every A ∈ Lin(X ).

We let Dev(X ) be the orthogonal complement of Sph(X ) in Sym(X ), that is,

Sym(X ) = Sph(X )⊕Dev(X ). (5)

If A ∈ Sym(X ), it follows from trA = 〈〈I,A〉〉 that A ∈ Dev(X ) if and only if trA = 0.
That is, the space Dev(X ) consists of the subspace of traceless operators in Sym(X ). The
decomposition in (5) for an element A of Sym(X ) takes the form

A =
1
n
(trA)I +

(
A− 1

n
(trA)I

)
,

where n is the dimension of the vector space X . This is akin to the decomposition of a stress
into a “hydrostatic pressure” plus a “deviatoric stress” and should explain the notation Dev,
which was introduced in [19], if not earlier.

We denote by Skew(X ) the subspace of skew-symmetric transformations in Lin(X ),
that is, Skew(X ) = {A ∈ Lin(X ) : A∗ =−A}. Let us note that Lin(X ) has the orthogonal
decomposition

Lin(X ) = Sym(X )⊕Skew(X ) = Sph(X )⊕Dev(X )⊕Skew(X ).

The tensor product of elements u and v in X , denoted by u⊗v, is a linear mapping on
X defined by

(u⊗v)x = 〈x,v〉u, ∀x ∈X .

In the rest of this article, the abstract space X will represent concrete vector spaces
of various types. In the special case when X = V , where V is the usual Euclidean vector
space, we simplify the notations by writing Lin, Sym, Dev, Skew, and Orth instead of Lin(V ),
Sym(V ), Dev(V ), Skew(V ), and Orth(V ).

4 Complexification

Complexification provides a procedure to extend a real vector space to a complex one. For
the reader’s convenience, we briefly describe the process. See [10] for a full treatment.

4.1 Complexification of a vector space

The complexification X † of a real vector space X is the set of all ordered pairs (u,v) with
u and v in X . Addition and scalar multiplication (by complex numbers) on X † are defined
as follows. For all u,v,w,z in X and a, b in R:

(u,v)+(w,z) = (u+w,v+ z),
(a+bi)(u,v) = (au−bv,bu+av).

1 The trace of a linear operator on a finite dimensional vector space is the sum of the diagonal terms in its
matrix representation with respect to an orthonormal basis. The sum is independent of the choice of basis,
and therefore the trace is an intrinsic property of the operator. The trace also equals the sum of the operator’s
eigenvalues (including the complex ones); see [10] for details.
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Note that i(u,0) = (0,u) for every u ∈X , and in general, every element (u,v) ∈X † can
be written as

(u,v) = (u,0)+ i(v,0). (6)

If {ei}n
1 is a basis of X , then

{
(ei,0)

}n
1 is a basis of X †, therefore X and X † have the

same dimension.
The linear mapping X →X † : u 7→ (u,0) (over the scalar field R) is the natural em-

bedding of X into X †. It is often convenient to identify an element u ∈X with its copy
(u,0) ∈X †. Thus, in view of this identification and (6) we write u for (u,0) and u+ iv for
(u,v) ∈X †.

If X is endowed with an inner product 〈·, ·〉, we get a corresponding inner product on
X † given by

〈u+ iv,w+ iz〉=
[
〈u,w〉+ 〈v,z〉

]
+ i
[
〈v,w〉−〈u,z〉

]
.

4.2 Complexification of linear transformations

Let X be a real vector space as before. Any linear mapping T : X →X can be extended
to a linear mapping T † : X †→X † according to:

T †(u+ iv) = T u+ iT v, ∀u,v ∈X .

The complexified version of a linear transformation behaves essentially the same way as its
real counterpart. Here we note a few facts which will be relevant to our subsequent analysis.
Let T be a linear mapping on X . If T = αI, for some α ∈ R, then clearly T † = αI also.
Conversely, if T † = σ I, then σ ∈R and T = σ I. Also, for linear mappings T and S, we have
T S = ST if and only if T †S† = S†T †.

Eigenspaces of T and T † are closely related. If α is a real eigenvalue of T †, then it is
also an eigenvalue of T . Also, if (a± ib,x± iy) are complex eigenpairs for T †, it is simple
to see that span{x,y} is an invariant subspace of T .

When it is clear from the context, we drop the superscript † for the complexification of
a linear transformation. For example, if Q is an orthogonal transformation on R3, we refer
to its complexification (a unitary map on C3) also as Q.

5 Group representation

Let X be a vector space and G be a group with the group operation ∗. A group homomor-
phism from G to GL(X ) is called a representation of G on X . Thus Π : G→ GL(X ) is a
representation if

Π(g1 ∗g2) = Π(g1)◦Π(g2) for all g1,g2 ∈ G,

where the ◦ denotes the composition of operators on Lin. A representation Π of a group G
on an inner product space

(
X ,〈·, ·〉

)
is said to be orthogonal if Π(g) ∈ Orth(X ) for every

g ∈ G; that is, Π is orthogonal if

〈Π(g)u,Π(g)v〉= 〈u,v〉 for all u,v ∈X , g ∈ G. (7)

For an accessible introduction to group representation theory see [12].
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5.1 Invariance and irreducibility

Let Π be a representation of a group G on a vector space X . A subspace U of X is said to
be invariant under Π if

Π(g)U ⊆U ∀g ∈ G.

A representation is irreducible if its only invariant subspaces are {0} and X . In other words,
the representation Π is irreducible if for any subspace U of X we have:{

Π(g)U ⊆U ∀g ∈ G
}
⇒

{
U = {0} or U = X

}
.

Remark 1 In finite-dimensional spaces, the inclusion Π(g)U ⊆U may be replaced by equal-
ity Π(g)U =U without affecting the definition.

Irreducible representations are important as they can be thought of building blocks for
more complicated representations.

5.2 Representations of orthogonal groups

Here we introduce a few special representations of subgroups of the orthogonal group that
play significant roles in our work. All of these representations are orthogonal in the sense
of the definition in equation (7). In what follows, V is the n-dimensional Euclidean vec-
tor space and G is a subgroup of Orth. Note that following the convention established in
Section 3, we write Orth instead of Orth(V ), etc.

The natural representation, Πnat, of G on V is the mapping Πnat : G→ GL(V ) defined by

Πnat(Q) = Q for all Q ∈ G. (8)

The adjoint representation, Πadj, of G on Lin is the mapping Πadj : G→GL(Lin) defined by

Πadj(Q)[A] = QAQT for all Q ∈ G, A ∈ Lin. (9)

To see that Πadj is a group homomorphism, we note that for any A ∈ Lin and Q1,Q2 ∈G
we have:

Πadj(Q1Q2)[A] = (Q1Q2)A(Q1Q2)
T = Q1(Q2AQT

2 )Q
T
1

= Q1
(
Πadj(Q2)[A]

)
QT

1 = Πadj(Q1)
[
Πadj(Q2)[A]

]
=
(
Πadj(Q1)Πadj(Q2)

)
[A].

Thus Πadj(Q1Q2) = Πadj(Q1)Πadj(Q2), as required by the group homomorphism property.
To show orthogonality, for every Q ∈ G and A,B ∈ Lin we compute:

〈〈Πadj(Q)[A],Πadj(Q)[B]〉〉= 〈〈QAQT ,QBQT 〉〉= tr(QAQT QBT QT ) = tr(ABT ) = 〈〈A,B〉〉.

Additionally, Πadj has the following invariance properties:

1. For every Q ∈ G, Πadj(Q) leaves the subspaces Sym and Skew of Lin invariant.
2. For every Q∈G, Πadj(Q) leaves the subspaces Sph and Dev of Sym invariant. Invariance

of Sph is trivial. To see that Πadj(Q) leaves Dev invariant, note that tr
(
Πadj(Q)[A]

)
=

tr(QAQT ) = trA. Therefore, A ∈ Dev if and only if Πadj(Q)[A] ∈ Dev.
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These motivate the following additional definitions:

The symmetric representation, Πsym, of G on Sym is the mapping Πsym : G→ GL(Sym)
defined by

Πsym(Q)[A] = QAQT for all Q ∈ G, A ∈ Sym. (10)

The deviatoric representation, Πdev, of G on Dev is the mapping Πdev : G→ GL(Dev) de-
fined by

Πdev(Q)[A] = QAQT for all Q ∈ G, A ∈ Dev. (11)

The skew representation, Πskw, of G on Skew is the mapping Πskw : G→GL(Skew) defined
by

Πskw(Q)[W ] = QWQT for all Q ∈ G, W ∈ Skew. (12)

Remark 2 The invariance relation (3) may be expressed in terms of the group representation
Πsym as:

Πsym(Q)◦C= C◦Πsym(Q), ∀Q ∈ G. (13)

Thus, the invariance relation (3) is equivalent to asserting that C and Πsym commute. This
commutativity condition appears explicitly in equation (5) of [19] and subsequent literature,
albeit outside the group representation context.

Remark 3 If C is non-self-adjoint, then it follows from the identity in (13) that CT ◦Πsym(Q)T =
Πsym(Q)T ◦CT . But since Πsym(Q) is orthogonal, this simplifies to

Πsym(Q)◦CT = CT ◦Πsym(Q), ∀Q ∈ G. (14)

5.3 Complexification of a representation

Let Π be a representation of a group G on a real vector space X . Its complexification Π †,
defined by

Π
†(g) =

(
Π(g)

)†
, ∀g ∈ G,

is a representation of G on X †. It is straightforward to verify that if Π † is irreducible, then
so is Π ; however, the converse is not true. For instance, let Q be the rotation of R2 by an
angle θ ∈ (0,π) and let G be the group generated2 by Q. The natural representation Πnat
of G on R2 has no invariant subspaces other than {0} and R2, therefore it is irreducible.
However, its complexification, Π

†
nat, has one-dimensional eigenspaces in C2, therefore it is

reducible.

6 Schur’s Lemma

Schur’s Lemma [24,5,12] is a basic result in group representation theory. We supply a proof
here to make the article self-contained and to motivate the variants that follow.

Lemma 1 (Schur’s Lemma) Suppose X is a finite-dimensional vector space over the
complex field and Π is a representation on X of a group G. If Π is irreducible and if
A ∈ Lin(X ) commutes with Π(g) for all g ∈ G, then A ∈ Sph(X ), that is, A is a scalar
multiple of the identity.

2 The group generated by a subset S of Orth(X ) is the smallest subgroup of Orth(X ) that contains S.
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Proof Let α be an (possibly complex) eigenvalue of A. Define the linear operator T = A−
αI. Since A commutes with Π(g) for every g ∈ G, it follows that,

T ◦Π(g) = Π(g)◦T, ∀g ∈ G. (15)

Clearly the null space Null(T ) of T is invariant under Π (this holds for null space of any
linear operator on X that satisfies (15)). Since α is an eigenvalue of A, Null(T ) = Null(A−
αI) 6= {0}. Therefore, Null(T ) = X since Π is an irreducible representation. Therefore
T = 0, and thus A = αI. ut

The proof given above relies on the fact that any linear operator on a finite-dimensional
complex vector space has an eigenvalue. Although this is not true in the case of real vector
spaces, any supplementary condition that ensures the existence of a (real) eigenvalue will
suffice for deducing the same conclusion. The following two variants of Schur’s Lemma
for real vector spaces provide the tools that we need. The first one is true because a sym-
metric linear transformation has real eigenvalues. The second one is true because linear
transformations on odd-dimensional real vector spaces are guaranteed to have at least one
real eigenvalue.

Lemma 2 Suppose X is a finite-dimensional inner product space over the reals and Π is
a representation on X of a group G. If Π is irreducible and if A ∈ Sym(X ) commutes with
Π(g) for all g ∈ G, then A ∈ Sph(X ), that is, A is a scalar multiple of the identity.

Lemma 3 Suppose X is a odd-dimensional vector space over the reals and Π is a repre-
sentation on X of a group G. If Π is irreducible and if A ∈ Lin(X ) commutes with Π(g)
for all g ∈ G, then A ∈ Sph(X ), that is, A is a scalar multiple of the identity.

The following lemma is in some sense a converse to Schur’s Lemma.

Lemma 4 Suppose G is a group with an orthogonal representation Π over a (real or com-
plex) inner-product space X . If for every A ∈ Sym(X ) we have:{

A◦Π(g) = Π(g)◦A, ∀g ∈ G
}
⇒ A ∈ Sph(X ), (16)

then Π is irreducible.

Proof Suppose to the contrary that Π is reducible. Then, there is a nontrivial subspace
U ⊂ X which is invariant under Π . Since Π is an orthogonal representation, then U⊥,
the orthogonal complement of U , is invariant under Π as well. Let P : X → X be the
orthogonal projection of X onto U . Pick any v ∈X and write v = u+u′ where u ∈U and
u′ ∈U⊥. Then:

P◦Π(g)(v) = P◦Π(g)(u+u′) = P◦Π(g)(u)+P◦Π(g)(u′)
= Π(g)(u) = Π(g)◦P(u+u′) = Π(g)◦P(v).

Thus P ∈ Sym(X ) and P◦Π(g) = Π(g)◦P for every g ∈ G. However, P is not a multiple
of identity, which contradicts (16). ut

The following technical result is also closely related to Schur’s Lemma.
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Lemma 5 Let G be a group with irreducible representations Π and Π ′ over finite-dimensional
vector spaces V and W , respectively. Let A : V →W be a linear map satisfying,

A◦Π(g) = Π
′(g)◦A, ∀g ∈ G. (17)

If dimV 6= dimW then A = 0.

Proof If dimV > dimW , then Null(A) 6= {0}. The identity (17) implies that Null(A) is
invariant under Π . Therefore Null(A) = V since Π is irreducible. If dimV < dimW , then
Range(A) is a proper subspace of W . Again, (17) implies that Range(A) is invariant under
Π ′, and since Π ′ is irreducible, we have Range(A) = {0}. ut

7 The main theorems

Theorem 1 gives sufficient conditions on a symmetry group of an hyperelastic material that
imply its isotropy. Theorem 2 states that if a group G fails to meets the conditions of The-
orem 1, then there exists an anisotropic hyperelastic material with G as a symmetry group.
Theorems 3 and 4 extend Theorem 1 to the non-hyperelastic and polar media, respectively,
in three dimensions.

7.1 Hyperelasticity

Theorem 1 Let V be the n-dimensional (real) Euclidean space and let C : Sym→ Sym be
linear and self-adjoint. Let G⊆Orth be such that the representations Πnat and Πdev defined
in (8) and (11) are both irreducible. Then the following are equivalent:

(a) G is a symmetry group for C, that is, (3) holds.
(b) C has the representation in (2).
(c) C is isotropic, that is (1) holds.

Proof The implications (b)⇒ (c) and (c)⇒ (a) are obvious. It remains to show (a)⇒ (b).
Letting E = I in the identity (3) yields C[I]Q = QC[I]; that is, C[I] commutes with every

Q in G. Applying Lemma 2 with A = C[I] and Π = Πnat, we conclude that C[I] is a scalar
multiple of identity. In particular, C leaves Sph invariant. Finally, since C is self-adjoint, it
leaves Sph⊥ = Dev invariant as well. Let Csph : Sph→ Sph and Cdev : Dev→ Dev be the
restrictions of C to Sph and Dev respectively.

The identity (3), restricted to E ∈ Dev and expressed in terms of Πdev, takes the form
Πdev(Q)

[
C[E]

]
= C

[
Πdev(Q)[E]

]
. Therefore Πdev(Q)◦Cdev = Cdev ◦Πdev(Q) for all Q ∈G.

Since Cdev is self-adjoint, the irreducibility of Πdev along with Lemma 2 implies that Cdev ∈
Sph(Dev); that is, Cdev is a scalar multiple of the identity map on Dev.

According to the decomposition in (5), any E ∈ Sym is of the form E = Esph +Edev
where Esph ∈ Sph and Edev ∈ Dev. Therefore

C[E] = C[Esph +Edev] = Csph[Esph]+Cdev[Edev] = αEsph +βEdev

for some real constants α and β . But Esph =
1
n (trE)I and Edev = E−Esph. Therefore

C[E] =
α

n
(trE)I +β

(
E− 1

n
(trE)I

)
= βE +

α−β

n
(trE)I = 2µE +λ (trE)I,

with 2µ = α/n and λ = (α−β )/n. ut
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Consider an elasticity tensor C, and suppose G is a symmetry group of C. Theorem 1
says that if the natural and deviatoric representations of G are irreducible then C is isotropic.
The following provides a converse.

Theorem 2 Let G be a subgroup of Orth. If for all linear and self-adjoint mappings C :
Sym→ Sym we have{

C[QEQT ] = QC[E]QT , ∀Q ∈ G, E ∈ Sym
}
⇒ C has the representation in (2) , (18)

then the natural and deviatoric representations of G are irreducible.

Proof We prove the statement for Πdev, the same argument applies to Πnat. Let D : Dev→
Dev, be linear and self-adjoint, and suppose that D◦Πdev(Q) =Πdev(Q)◦D for every Q∈G.
It follows from (18) that D ∈ Sph(Dev). This shows that{

D◦Πdev(Q) = Πdev(Q)◦D, ∀Q ∈ G
}
⇒ D ∈ Sph(Dev).

Hence, it follows from Lemma 4 that Πdev is irreducible. ut

Remark 4 The assumption of self-adjointness in Theorem 1 may be dropped provided that
we replace the assumption of irreducibility of Πdev by the irreducibility of its complexifica-
tion, Π

†
dev on Dev†. See section 9.3 for an application of this idea.

7.2 Three-dimensional elasticity in the non-hyperelastic case

In three-dimensional elasticity, we have dimV = 3 and dimDev = 5. Therefore, in view of
Lemma 3, the assumption of C being self-adjoint in the statement of Theorem 1 may be
dropped, thus extending it to non-hyperelastic materials. We record this interesting result in
the following theorem:

Theorem 3 Let V be the three-dimensional Euclidean vector space and let C : Sym→ Sym
be linear and not necessarily self-adjoint. Let G⊆Orth be such that the representations Πnat
and Πdev defined in (8) and (11) are both irreducible. Then the following are equivalent:

(a) G is a symmetry group for C, that is, (3) holds.
(b) C has the representation in (2).
(c) C is isotropic, that is (1) holds.

Proof As before, it suffices to prove that (a)⇒ (b). Letting E = I in the identity (3) yields
C[I]Q = QC[I]; that is, C[I] commutes with every Q in G. Applying Lemma 2 with A = C[I]
and Π = Πnat, we conclude that C[I] is a scalar multiple of identity, and thus C leaves Sph
invariant. In view of (14), the identity (3) also holds for the adjoint CT of C. Hence, applying
the same argument to CT , we conclude that CT leaves Sph invariant as well. Moreover, since
for every E ∈ Dev we have 〈〈C[E], I〉〉= 〈〈E,CT [I]〉〉= 0, then C leaves Dev invariant.

As in the proof of Theorem 1, the identity (3), restricted to E ∈ Dev and expressed in
terms of Πdev, implies Πdev(Q)◦Cdev = Cdev ◦Πdev(Q) for all Q ∈G. Then, irreducibility of
Πdev along with Lemma 3 imply that Cdev ∈ Sph(Dev). The rest of the proof is the same as
that of Theorem 1. ut
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7.3 Polar elasticity in three dimensions

In this section we extend the previous theory to polar media where the strain and stress are no
longer symmetric, thus the elasticity tensor is replaced with a linear mapping C : Lin→ Lin.
The foundations of polar media are described in [29, section 98]. Also see [20] for a survey
and review, and [21, chapter 6] for a very accessible elementary account. The main result of
this section is:

Theorem 4 Let V be the three-dimensional Euclidean vector space and let C : Lin→ Lin
be linear and not necessarily self-adjoint. Let G⊆ Orth be a group and suppose

QC[A]QT = C[QAQT ] for all A ∈ Lin, Q ∈ G. (19)

If the representations Πnat, Πdev and Πskw of G are irreducible, then

C[A] = a(trA)I +bA+ cAT , for all A ∈ Lin

where a,b, and c are real constants.

We will provide a proof of Theorem 4 in Section 7.3.3, after establishing the prerequisite
framework.

7.3.1 Linear transformations on Skew

Here we focus on linear mappings W : Skew→ Skew. The following result shows the condi-
tion under which such mappings are a multiple of identity.

Theorem 5 Let V be the three-dimensional Euclidean vector space and let W : Skew→
Skew be linear and not necessarily self-adjoint. Let G⊆ Orth be a group and suppose

QW[A]QT =W[QAQT ] for all A ∈ Skew, Q ∈ G. (20)

If the representation Πskw of G is irreducible, then W ∈ Sph(Skew), that is, there exists a
real constant ξ such that W[A] = ξ A for all A ∈ Skew.

Proof The identity (20) is equivalent to

Πskw(Q)◦W =W ◦Πskw(Q) for all Q ∈ G,

Since Skew is odd-dimensional (dimSkew = 3), Lemma 3 implies that W is a scalar multiple
of identity. ut

7.3.2 Linear transformations on Lin

Our next goal is to split a linear map C : Lin→ Lin into the sum of three operators conform-
ing to the decomposition

Lin = Sph⊕Dev⊕Skew.

See Proposition 1 for the precise statement.

Lemma 6 Let G⊆Orth be a group. Let V be the three-dimensional Euclidean vector space
and C : Lin→ Lin be a linear map for which the identity (19) holds. If the natural represen-
tation Πnat of G is irreducible, then C leaves Sph and Dev⊕Skew invariant.
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Proof Letting A = I in (19) gives,

C[I]Q = QC[I], for all Q ∈ G, (21)

Therefore, Lemma 3 implies that C[I] = αI for some α ∈ R; thus, C leaves Sph invariant.
An analogous argument applied to the adjoint CT of C shows that CT leaves Sph invariant.
Moreover, for any A ∈ Dev⊕ Skew we have 〈〈C[A], I〉〉 = 〈〈A,CT [I]〉〉 = 0; thus, C leaves
Dev⊕Skew invariant. ut

In view of the above lemma, we decompose the action of C as C[A] = C0[A]+C1[A] for
all A ∈ Lin, where C0 and C1 are the restrictions of C to Sph and Dev⊕ Skew, respectively.
We further decompose C1 by defining Cs : Dev⊕Skew→Dev and Cw : Dev⊕Skew→ Skew
via

Cs[A] =
1
2
(
C1[A]+C1[A]T

)
, Cw[A] =

1
2
(
C1[A]−C1[A]T

)
, A ∈ Dev⊕Skew. (22)

To fully decouple the action of C, we need to show that Cs[A] = 0 for every A ∈ Skew and
Cw[A] = 0 for every A ∈ Dev.

Lemma 7 Let G⊆Orth be a group. Let V be the three-dimensional Euclidean vector space
and C : Lin→ Lin be a linear map for which the identity (19) holds. If the deviatoric and
skew representations, Πdev and Πskw, of G are irreducible, then

1. Cs[A] = 0 for all A ∈ Skew,
2. Cw[A] = 0 for all A ∈ Dev.

Proof We demonstrate the prove of the first statement since that of the second statement is
similar.

We have for all A in Dev⊕Skew and Q ∈ G

QCs[A]QT =
1
2
(
QC1[A]QT +QC1[A]T QT )= 1

2
(
C1[QAQT ]+C1[QAQT ]T

)
= Cs[QAQT ].

Letting Cs
w : Skew→ Dev be the restriction of Cs to Skew, this implies that QCs

w[A]Q
T =

Cs
w[QAQT ] for all A ∈ Skew and Q ∈ G; or equivalently,

Πdev(Q)
[
Cs

w[A]
]
= Cs

w
[
Πskw(Q)[A]

]
, ∀A ∈ Skew,Q ∈ G,

that is,
Πskw(Q)◦Cs

w = Cs
w ◦Πdev(Q) for all Q ∈ G.

Since the dimensions of Skew and Dev are different (dimSkew= 3 and dimDev= 5), and the
representations Πdev and Πskw of G are irreducible, it follows from Lemma 5 that Cs

w = 0.
ut

Let πSph, πDev, and πSkew be orthogonal projections of Lin onto Sph, Dev, and Skew,
respectively; that is, for any A ∈ Lin,

πSph(A) =
1
3
(trA)I, πDev(A) =

1
2
(A+AT )− 1

3
(trA)I, πSkew(A) =

1
2
(A−AT ).

Let D : Dev→ Dev be the restriction of Cs to Dev and W : Skew→ Skew be the restriction
of Cw to Skew. By combining Lemmas 6 and 7, we arrive at the following decomposition
result:
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Proposition 1 Let G ⊆ Orth be a group. Let V be the three-dimensional Euclidean vector
space and C : Lin→ Lin be a linear map for which the identity (19) holds. If the representa-
tions Πnat, Πdev, and Πskw of G are irreducible, then

C= C0 ◦πSph +D◦πDev +W ◦πSkew. (23)

Remark 5 The significance of the Proposition 1 is that a linear mapping C : Lin→ Lin that
satisfies its hypotheses, leaves the subspaces Sph, Dev, and Skew of Lin invariant.

7.3.3 Proof of Theorem 4

Let us note that under the hypothesis of the Theorem, Proposition 1 applies. By Lemma 6,
C0[A] = ξ0A for all A∈ Sph, where ξ0 is a real constant. From (19) we have that QD[A]QT =
D[QAQT ] for all A ∈ Dev and Q ∈ G; or equivalently:

D◦Πdev(Q) = Πdev(Q)◦D, for all Q ∈ G.

Thus, using irreducibility of Πdev and the fact that Dev is odd-dimensional (dimDev = 5)
we apply Lemma 3 to get that D[A] = ξ1A for all A ∈ Dev where ξ1 is a real constant.

Next, we note that (19) implies that QW[A]QT =W[QAQT ] for all A ∈ Skew and Q ∈G.
Thus, Theorem 5 gives W[A] = ξ2A for all A ∈ Skew where ξ2 is a real constant. Applying
the decomposition (23) we have for an arbitrary A ∈ Lin,

C[A] = C0[πSph(A)]+D[πDev(A)]+W[πSkew(A)]

= ξ0πSph(A)+ξ1πDev(A)+ξ2πSkew(A)

= ξ0

(1
3
(trA)I

)
+ξ1

(A+AT

2
− 1

3
(trA)I

)
+ξ2

(A−AT

2

)
= a(trA)I +bA+ cAT ,

with a = (ξ0−ξ1)/3, b = (ξ1 +ξ2)/2, and c = (ξ1−ξ2)/2. ut

8 The classical representation theorem for isotropic elasticity tensors

Throughout this section, V is the n-dimensional Euclidean vector space. We derive the clas-
sical representation (2) for hyperelastic materials as an application of Theorem 1 with the
symmetry group G = Orth. For this, we need to verify that when G = Orth, the represen-
tations Πnat and Πdev are irreducible. The irreducibility of Πdev is a consequence of the
following lemma which is implied by a lemma in [19]:

Lemma 8 Let E ∈Dev, E 6= 0 and F ∈Dev. If 〈〈Πdev(Q)[E],F〉〉= 0 for all Q ∈Orth, then
F = 0.

With the aid of this, we have:

Theorem 6 If the symmetry group G in (3) is the orthogonal group Orth, then (2) holds.

Proof When G = Orth, the representations Πnat is clearly irreducible because the only sub-
spaces of V that are invariant under all rotations are {0} and V . To show the irreducibility
of Πdev, suppose U is a nontrivial subspace of Dev which is invariant under Πdev. Then
Πdev(Q)U = U for all Q ∈ Orth. Choose a nonzero E in U and let F ∈U⊥ ⊂ Dev. Then
〈〈Πdev(Q)[E],F〉〉 = 0 for all Q ∈ Orth. From Lemma 8 it follows that F = 0 therefore
U = Dev and thus the representation Πdev of Orth is irreducible. Then the assertion of the
lemma follows from Theorem 1. ut
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9 Isotropy in two-dimensional elasticity

In two-dimensional hyperelasticity, if the identity (3) holds for a rotation Q, then the material
is isotropic provided that Q’s rotation angle is other than an integer multiple of π/2. This
assertion, stated formally in Theorem 7 below, follows from Theorem 1 with the aid of two
elementary lemmas.

In the non-hyperelastic case, addressed in Theorem 8, if the identity (3) holds for a
rotation by an angle other than an integer multiple of π/2 and also a reflection, then the
elasticity tensor is isotropic. Throughout this section, V is the two-dimensional Euclidean
vector space.

Remark 6 When we speak of a symmetry group in the context of two-dimensional elas-
ticity, we consider the material as two-dimensional mathematical object, and not the two-
dimensional cross-section of a three-dimensional material. The isotropy of a two-dimensional
elastic material is a statement about the independence of orientation within its plane; the
third dimension does not enter the picture. Two-dimensional cases arise naturally in plane
strain or plane stress problems.

9.1 Reflections and rotations in two-dimensions

Let {e1,e2} be an orthonormal basis of V , and let R be a reflection about e1; that is, Re1 = e1
and Re2 = −e2. Then, R has eigenvalues +1 and −1 corresponding to eigenvectors e1 and
e2. Let Q be a rotation of V by an angle θ . Then we have,

Qe1 = cosθe1 + sinθe2, Qe2 =−sinθe1 + cosθe2.

On the complexification V † of V , Q has eigenvalues e±iθ corresponding to eigenvectors
e1∓ ie2.

9.2 The hyperelastic case

Our goal here is to apply Theorem 1 to a group generated by a single rotation on V . The
condition on irreducibility of the natural representation is addressed by the following lemma.

Lemma 9 Let Q be a rotation of V by an angle θ which is other than an integer multiple
of π , and let G be the subgroup of Orth generated by Q. Then the representation Πnat of G
is irreducible.

Proof Let U be a nontrivial subspace of V which is invariant under the representation Πnat.
Then Πnat(Q)U = QU ⊂U . Now, for any nonzero vector v ∈U , the vectors v and Qv are
linearly independent because θ is not an integer multiple of π . Hence U is two-dimensional,
therefore U = V . Consequently, Πnat has no invariant subspaces other than {0} and V and
thus it is irreducible. ut

Let {e1,e2} be the orthonormal basis of V as above. It is straightforward to verify that
the complexified operator Π

†
dev(Q) : Dev† → Dev† has eigenvalues e∓2iθ corresponding to

the eigenvectors E1± iE2, where:

E1 = e1⊗ e1− e2⊗ e2, E2 = e1⊗ e2 + e2⊗ e1, (24)
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and {E1,E2} is an orthogonal basis of Dev†. When θ is not an integer multiple of π/2, the
eigenvalues are complex, therefore the mapping Πdev(Q) has no one-dimensional invariant
subspaces. This leads to the following lemma.

Lemma 10 Let Q be a rotation of V by an angle θ which is other than an integer multiple
of π/2 and let G be the subgroup of Orth generated by Q. Then the representation Πdev of
G is irreducible.

Proof Under the assumptions, Πdev(Q) has no real eigenvalues, therefore it cannot have a
one-dimensional invariant subspace. Hence, if U ⊆ Dev is a subspace invariant under Πdev,
then either U = {0} or U = Dev. ut

Combining the assertions of the preceding two lemmas with Theorem 1 we arrive at:

Theorem 7 Let V be the two-dimensional Euclidean vector space and let C : Sym→ Sym
be linear and self-adjoint. Suppose that the identity

QC[E]QT = C[QEQT ] for all E ∈ Sym,

holds for a particular Q ∈ Orth that represents a rotation by a certain angle θ . If θ is not
an integer multiple of π/2, then C is isotropic.

9.3 The non-hyperelastic case

If we lift the assumption of C being self-adjoint, Theorem 7 no longer holds. In this case we
recall Remark 4 which allows for lifting the assumption of self-adjointness of C in Theo-
rem 1 at the expense of checking irreducibility of Π

†
dev.

The representation Π
†
dev of a group generated by a rotation Q is not irreducible on Dev†

as Π
†
dev(Q) has one-dimensional eigenspaces:

span{E1 + iE2}, span{E1− iE2},

where E1 and E2 are as in (24). Let R be a reflection of V about axis e1 as in Section 9.1. It
is evident that Πdev(R)[E1] = E1 and Πdev(R)[E2] = −E2; that is, Πdev(R) has eigenvalues
±1 corresponding to eigenvectors E1 and E2.

Let Q be a rotation with angle θ which is not an integer multiple of π/2 and R a reflec-
tion. By the above discussion, the invariant subspaces of Π

†
dev(R) in Dev† are:

{0}, span{E1}, span{E2}, Dev†,

and the invariant subspaces of Π
†
dev(Q) in Dev† are:

{0}, span{E1 + iE2}, span{E1− iE2}, Dev†.

The only subspaces of Dev† which are invariant under both Π
†
dev(R) and Π

†
dev(Q) are {0}

and Dev†. We have just proved the following:

Lemma 11 Let R be a reflection in V and let Q be a rotation of V by an angle θ which is
other than an integer multiple of π/2. Let G be the subgroup of Orth generated by R and Q.
Then the representation Π

†
dev of G over Dev† is irreducible.
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Clearly the natural representation of the group G described in Lemma 11 is irreducible
also. Therefore, Lemma 11 along with Remark 4 gives the following result:

Theorem 8 Let V be the two-dimensional Euclidean vector space and let C : Sym→ Sym
be linear and not necessarily self-adjoint. Suppose that the identities

RC[E]RT = C[RERT ] and QC[E]QT = C[QEQT ] for all E ∈ Sym,

hold, where R is a reflection and Q is a rotation of V by an angle θ other than an integer
multiple of π/2. Then C is isotropic.

9.4 Polar elasticity

Theorem 8 generalizes to polar media as follows:

Theorem 9 Let V be the two-dimensional Euclidean vector space and let C : Lin→ Lin be
linear and not necessarily self-adjoint. Suppose that the identities

RC[A]RT = C[RART ] and QC[A]QT = C[QAQT ] for all A ∈ Lin,

hold, where R is a reflection and Q is a rotation of V by an angle θ other than an integer
multiple of π/2. Then, there exist real constants a, b, c such that

C[A] = a(trA)I +bA+ cAT , for all A ∈ Lin.

The proof of this, which we omit to avoid repetition, is along the lines of the arguments
presented in Theorem 4. An observation that enters the proof is that the complexified repre-
sentation Π

†
nat is irreducible on V †.

10 Isotropy in three-dimensional elasticity

One of the interesting results in [11] is that elastic symmetry under two generic rotations in
three dimensions implies isotropy. (The term “generic” is made precise in Definition 1 be-
low.) We rederive that result here as an application of our Theorem 3. This requires verifying
the theorem’s irreducibility hypotheses which involves lengthy and detailed calculations. We
rely on the analysis in [11] for some of the technical details.

10.1 Rotations in three dimension

Throughout this section, V is the 3-dimensional Euclidean vector space. Let us denote by
Rα

u a rotation by angle α about a unit vector u ∈ V . The composition of two rotations Rα
u

and Rβ
v is rotation Rγ

w, where w and γ can be computed as follows (see the Appendix in [11]
for an algebraic proof). Let

Y = cos
α

2
cos

β

2
− (u ·v)sin

α

2
sin

β

2
. (25)
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Then,

w =
sign(Y )√

1−Y 2

[(
cos

α

2
cos

β

2
)
u+

(
cos

α

2
sin

β

2
)
v+
(

sin
α

2
sin

β

2
)
u×v

]
, (26a)

cosγ =−1+Y 2, (26b)

sinγ = 2|Y |
√

1−Y 2. (26c)

In (26a), u×v denotes the familiar cross product of u and v.

10.2 Symmetry groups generated by two rotations

Following [11], we employ the notation

[α,β ,d] = {G⊆ Orth : G is the group generated by Rα
u ,R

β
v with u ·v = d}.

Thus [α,β ,d] is a collection of subgroups of Orth, and if G1 and G2 are in [α,β ,d], then
there exists Q ∈ Orth such that G1 = QG2QT .

Let Rα
u , Rβ

v , and Rγ
w be three rotations such that Rα

u Rβ
v = Rγ

w. Then any group containing
two of the rotations will also include the third; moreover, any two of Rα

u , Rβ
v and Rγ

w generate
the same group and [α,β ,u ·v] = [α,γ,u ·w] = [β ,γ,v ·w].

10.3 Representations of symmetry groups generated by two rotations

Let u and v be a pair of non-collinear vectors in V and let us consider the group G generated
by the rotations Rα

u and Rβ
v . The goal of this section is to investigate the irreducibility of the

representations Πnat and Πdev of G. Noting that Rα
u = Rα+2π

u = R−α
−u and R0

u = I, we may
confine the angles α and β to the interval (0,π]. We divide the discussion into the following
mutually disjoint cases that cover all possibilities:

C1 : α 6= π and β 6= π

C2 : α 6= π,β = π (or vice versa), and u ·v 6= 0

C3 : α 6= π,β = π (or vice versa), and u ·v = 0

C4 : α = β = π

 (27)

10.3.1 Case C1

The groups corresponding to the case C1 have irreducible natural representations, as proven
in the following proposition.

Proposition 2 Assume case C1 of (27) holds. Then the natural representation Πnat of the
group G generated by Rα

u and Rβ
v is irreducible.

Proof Let U = span{u} and V = span{v}. Since α 6= π and β 6= π , then the only in-
variant subspaces of Rα

u are
{
{0},U,U⊥,V

}
and the only invariant subspaces of Rβ

v are{
{0},V,V⊥,V

}
. Thus if Rα

u and Rβ
v have a common nontrivial invariant proper subspace,

then dimensional considerations imply that U = V which contradicts the standing assump-
tion that u and v are non-collinear. ut
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The verification of irreducibility of the deviatoric representation is quite nontrivial. In
the proof of the following result, we appeal to related analysis in [11].

Proposition 3 Assume case C1 of (27) holds. The deviatoric representation Πdev of the
group G generated by Rα

u and Rβ
v is irreducible if none of the following holds:

1. α = β = π/2 and u ·v = 0
2. α = π/2,β = 2π/3 (or vice versa) and |u ·v|= 1/

√
3

3. α = β = 2π/3 and |u ·v|= 1/3.

Proof According to Theorem 8.5 in [11], the complexifications Π
†
dev(R

α
u ) and Π

†
dev(R

β
v )

share a common nontrivial invariant proper subspace of Dev† only if at least one of the con-
ditions 1–3 hold. Therefore, if none of the conditions hold, then Π

†
dev(R

α
u ) and Π

†
dev(R

β
v )

share no common nontrivial invariant proper subspace, from which it follows that their real
counterparts, Πdev(Rα

u ) and Πdev(R
β
v ), share no common nontrivial invariant proper sub-

space, hence Πdev is irreducible. ut

10.3.2 Case C2

As noted in [11], case C2 provides no symmetry groups other than those in case C1. Thus
one obtains irreducibility of natural and deviatoric representations corresponding to case C2
as a consequence of the corresponding results in case C1. Let us show that any group in case
C2 corresponds to a group in C1.

Lemma 12 Let Rα
u and Rπ

v be rotations with α ∈ (0,π) and u ·v 6= 0, and let G be the group
generated by Rα

u and Rπ
v . Then, there exists a rotation Rγ

w with γ 6= π such that G is generated
by Rα

u and Rγ
w also.

Proof Let Rγ
w = Rα

u Rπ
v . The vector w can be computed using (26a), and is clearly linearly

independent from u. It is now sufficient to show that γ 6= π . Note that by (25) we have
Y = −(u · v)sin α

2 6= 0, and thus from (26b) we obtain cosγ = −1+Y 2 > −1. Therefore,
γ 6= π . ut

Using the composition formula in (26a), (26b),(26c) it is also possible to compute which
groups of case C2 correspond to the special groups in C1 listed in Proposition 3. This corre-
spondence was derived in [11] and is restated in the following:

Proposition 4 The following identities hold:[2π

3
,π,

1√
3

]
=
[2π

3
,π,− 1√

3

]
=
[2π

3
,

2π

3
,

1
3

]
=
[2π

3
,

2π

3
,−1

3

]
,

[
π

2
,π,

1√
2

]
=
[

π

2
,π,− 1√

2

]
=
[2π

3
,π,

√
2
3

]
=
[2π

3
,π,−

√
2
3

]
=
[

π

2
,

π

2
,0
]
=
[

π

2
,

2π

3
,

1√
3

]
=
[

π

2
,

2π

3
,− 1√

3

]
.

We return to our discussion of irreducibility of natural and deviatoric representations.
Since Πnat is irreducible for groups corresponding to case C1, we know that the same holds
for the case of C2. The following proposition gives an alternative proof for case C2 which is
direct and self-contained.
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Proposition 5 Assume case C2 of (27) holds. Then the natural representation Πnat of the
group G generated by Rα

u and Rβ
v is irreducible.

Proof Let U = span{u} and V = span{v}. Suppose α 6= π and β = π . The only invariant
subspaces of Rα

u are
{
{0},U,U⊥,V

}
. The invariant subspaces of Rβ

v consist of

{0}, V, V⊥, V ′
ξ
, V ,

where V ′
ξ

represents the (infinite) family of one-dimensional subspaces of V consisting of
lines that are perpendicular to V . None of these lines can coincide with u because then u
and v will be perpendicular. And none of these lines can be invariant under Rα

u because α

is not a multiple of π . This leaves only {0} and V as spaces that are invariant under both
rotations. Therefore, Πnat is irreducible. ut

In view of the identifications in Proposition 4 and the result in Proposition 3, we have
the following:

Proposition 6 Assume case C2 of (27) holds. Then the deviatoric representation Πdev of the
group G generated by Rα

u and Rβ
v is irreducible if none of the following holds:

1. α = π/2 and |u ·v|= 1/
√

2
2. α = 2π/3 and |u ·v|= 1/

√
3

3. α = 2π/3 and |u ·v|=
√

2/3

10.3.3 Cases C3 and C4

Here we show that the groups corresponding to the cases C3 and C4 always have reducible
natural representations.

Proposition 7 Assume that case C3 or C4 of (27) holds. Then the natural representation
Πnat of the group G generated by Rα

u and Rβ
v is reducible.

Proof If α = β = π , then the one-dimensional subspace span{u×v} ⊂ V is invariant under
Rα

u and Rβ
v . Therefore, Πnat is reducible.

If α 6= π , β = π , and u · v = 0. Then, since u and v are perpendicular, then the one-
dimensional subspace span{u} ⊂ V is invariant under Rα

u and Rπ
v . Therefore, Πnat is re-

ducible. ut

It follows immediately from the above result that symmetry groups corresponding to the
cases C3 and C4 do not imply isotropy, as Theorem 1 does not apply. Moreover, by Theo-
rem 2 we know if the natural representation of a symmetry group G is reducible, then there
exists an anisotropic elasticity tensor C having G as a symmetry group.

10.4 The main result in 3D

We are now in a position to apply Theorem 3 to characterize the symmetry groups that imply
isotropy of an elasticity tensor in three-dimensional elasticity. To that purpose, we introduce:

Definition 1 Let u and v be non-collinear unit vectors and let Rα
u and Rβ

v be rotations by
angles α and β about u and v, respectively. We say {Rα

u ,R
β
v } is a special rotation pair if at

least one of the following conditions holds:
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α β |u ·v|
π/2 π/2 0
π/2 2π/3 1

√
3

π/2 π 1/
√

2
2π/3 2π/3 1/3
2π/3 π 1/

√
3 or

√
2/3

ϕ π 0
π π –

Table 1 The symmetry group generated by a pair of rotations Rα
u and Rβ

v implies isotropy if α , β and u · v
are other than the special cases tabulated here. Here ϕ stands for an arbitrary angle.

1. α = β = π/2 and u ·v = 0
2. α = π/2,β = 2π/3 and |u ·v|= 1/

√
3

3. α = β = 2π/3 and |u ·v|= 1/3
4. α = π/2, β = π , and |u ·v|= 1/

√
2

5. α = 2π/3, β = π , and |u ·v|= 1/
√

3 or |u ·v|=
√

2/3
6. α = 2π/3, β = π , and |u ·v|=

√
2/3

7. α 6= π , β = π , and u ·v = 0
8. α = β = π

If {Rα
u ,R

β
v } is not a special rotation pair, then we say it is a generic rotation pair, or generic

for short. For instance, if u and v are orthogonal and α = β = π/3, then {Rα
u ,R

β
v } is generic.

Theorem 10 Let C : Sym→ Sym be linear and not necessarily self-adjoint. Suppose that
the identity

QC[E]QT = C[QEQT ] for all E ∈ Sym (28)

holds for Q=Rα
u and Q=Rβ

v , where {Rα
u ,R

β
v } is a generic rotation pair. Then C is isotropic.

Proof Let G be the group generated by Rα
u and Rβ

v . Clearly, the relation (28) holds for every
Q ∈ G also.

If α and β are both different from π (case C1), then we know by Proposition 2 that the
representation Πnat of G is irreducible. Moreover, since none of the conditions 1, 2, and 3 of
Definition 1 hold, we know by Proposition 3 that Πdev is also irreducible. Hence, the result
follows from Theorem 3.

If α 6= π , β = π , and u and v are not perpendicular (case C2), we know by Proposition 5
that the representation Πnat of G is irreducible. Moreover, since none of the conditions 4, 5,
and 6 of Definition 1 hold, we know by Proposition 6 that Πdev is also irreducible. Thus, the
result follows from Theorem 3.

Finally, not having conditions 7 and 8 of Definition 1, rules out cases C3 and C4 in which
the representation Πnat of G would be reducible. ut

Table 1 summarizes the content of the theorem in a tabular form.

11 Polar elasticity revisited

In this section we show that under the same hypothesis as that of Theorem 10, a linear
mapping C : Lin→ Lin is isotropic.
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We have already dealt with irreducibility of natural and deviatoric representations of
groups generated by two rotations. Here we complete the analysis by characterizing the
irreducibility of the skew representation.

Proposition 8 Assume that case C1 or C2 of (27) holds. Then the skew representation Πskw

of the group G generated by Rα
u and Rβ

v is irreducible.

Proof Recall that any group generated by two rotations satisfying case C2 corresponds to a
group in case C1. Therefore, it is sufficient to prove that a group G generated by two rotations
Rα

u and Rβ
v satisfying case C1 has irreducible Πskw. Hence, G will be a group generated by

Rα
u and Rβ

v with u and v non-collinear, and α 6= π and β 6= π .
Let Q = Rα

u , and let {e1,e2,e3} be an orthonormal basis of V with e1 = u. Without loss
of generality we may assume,

Qe1 = e1, Qe2 = (cosα)e2 +(sinα)e3, Qe3 =−(sinα)e2 +(cosα)e3. (29)

Also, let {E1,E2,E3} be given by

E1 = e1⊗ e2− e2⊗ e1, E2 = e1⊗ e3− e3⊗ e1, E3 = e2⊗ e3− e3⊗ e2, (30)

be an orthogonal basis of Skew. Then we have:

Πskw(Q)[E1] =(cosα)E1 +(sinα)E2,

Πskw(Q)[E2] =− (sinα)E1 +(cosα)E2

Πskw(Q)[E3] =E3.

This shows that on Skew†, Π
†
skw(Q) has eigenvalues {e±iα ,1} corresponding to the eigen-

vectors {E1∓ iE2,E3}. Moreover, since α 6= π , the eigenvalues are distinct.
Let V1 = span{E3} and V2 = span{E1,E2} and note that the subspaces of Skew invari-

ant under Πskw(Q) are
{
{0},V1,V2, Skew

}
. For Q̃ = Rβ

v , we may analogously get an or-
thonormal basis {f1, f2, f3} of V , an orthogonal basis {F1,F2,F3} of Skew, and the invariant
subspaces

{
{0},V ′1,V ′2, Skew

}
.

We shall show that Πskw(Q) and Πskw(Q̃) share no invariant subspaces other than {0}
and Skew. For this, it suffices to show that V1 and V ′1 do not coincide; if they do, then there
exists a nonzero ξ ∈ R such that F3 = ξ E3, that is

f2⊗ f3− f3⊗ f2 = ξ
(
e2⊗ e3− e3⊗ e2

)
. (31)

Applying both sides of (31) to f1 gives, ξ 〈f1,e3〉e2−ξ 〈f1,e2〉e3 = 0, which in turn implies
that 〈f1,e2〉 = 〈f1,e3〉 = 0. Therefore, it must be the case that f1 and e1 are collinear. This
however contradicts the standing assumption that e1 = u and f1 = v are non-collinear. We
conclude that the only subspaces of Skew invariant under both Πskw(Rα

u ) and Πskw(R
β
v ) are

the zero subspace and Skew itself. Hence, the representation Πskw of the group G generated
by Rα

u and Rβ
v is irreducible. ut

Combining Proposition 8 with Theorem 5, we arrive at the following interesting result:

Proposition 9 Let W : Skew→ Skew be linear and not necessarily self-adjoint. Let Rα
u and

Rβ
v be rotations of angles α and β about non-collinear vectors u and v respectively, where

u, v, α , and β satisfy either C1 or C2. Suppose that the identity

QW[A]QT =W[QAQT ] for all A ∈ Lin, (32)

holds for Q = Rα
u and Q = Rβ

v . Then, W ∈ Sph(Skew).
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Remark 7 The above representation result for linear mappings on Skew was obtained in [7]
and [23] when the identity (32) holds for all Q ∈ Orth.

Theorem 11 Let C : Lin→ Lin be linear and not necessarily self-adjoint. Suppose that the
identity

QC[A]QT = C[QAQT ] for all A ∈ Lin (33)

holds for Q = Rα
u and Q = Rβ

v , where {Rα
u ,R

β
v } is a generic rotation pair. Then,

C[A] = a(trA)I +bA+ cAT , for all A ∈ Lin (34)

where a,b, and c are real constants.

Proof Let G be the group generated by Rα
u and Rβ

v . Then, the identity (33) holds for all
Q ∈G. We know by Propositions 2 (if in case C1) or Proposition 5 (if in case of C2) that the
representation Πnat of G is irreducible. Moreover, Proposition 3 (if in case C1) or Proposi-
tion 6 (if in case C2) imply that the representation Πdev of G is irreducible. Finally, Proposi-
tion 8 implies that the representation Πskw of G is irreducible. Therefore, the result follows
from Theorem 4. ut

Remark 8 An elementary derivation of the representation (34), assuming the symmetry
group is the full Orth, is given in [14, Chapter VII]. Alternative derivations appear in [6]
and [23], (also see references therein). This is generalized in [2] to tensors in n-dimensions,
where it is observed that only a certain finite subset of elements of Orth suffice. The novelty
of Theorem 11 is in that only an arbitrary pair of generic rotations suffices to reach the same
conclusion, albeit in three dimensions.

References

1. M. M. Carroll. Must elastic materials be hyperelastic? Mathematics and Mechanics of Solids, 4:369–376,
2009.

2. Carl de Boor. A naive proof of the representation theorem for isotropic, linear asymmetric stress-strain
relations. J. Elasticity, 15(2):225–227, 1985.

3. Gianpietro Del Piero. Some properties of the set of fourth-order tensors, with application to elasticity. J.
Elasticity, 9(3):245–261, 1979.

4. Gianpietro Del Piero. Representation theorems for hemitropic and transversely isotropic tensor func-
tions. J. Elasticity, 51(1):43–71, 1998.

5. William Fulton and Joe Harris. Representation theory, volume 129 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1991.

6. Zhong Heng Guo. The representation theorem for isotropic, linear asymmetric stress-strain relations. J.
Elasticity, 13(2):121–124, 1983.

7. Zhong Heng Guo and P. Podio-Guidugli. A concise proof of the representation theorem for linear
isotropic tensor-valued mappings of a skew argument. J. Elasticity, 21(3):317–320, 1989.

8. Morton E. Gurtin. A short proof of the representation theorem for isotropic, linear stress-strain relations.
J. Elasticity, 4(3):243–245, 1974.

9. Morton E. Gurtin. An introduction to continuum mechanics, volume 158 of Mathematics in Science and
Engineering. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1981.

10. Paul R. Halmos. Finite-dimensional vector spaces. The University Series in Undergraduate Mathematics.
D. Van Nostrand Co., Inc., Princeton-Toronto-New York-London, 1958. 2nd ed.

11. Yong Zhong Huo and Gianpietro Del Piero. On the completeness of the crystallographic symmetries in
the description of the symmetries of the elastic tensor. J. Elasticity, 25(3):203–246, 1991.

12. Gordon James and Martin Liebeck. Representations and characters of groups. Cambridge University
Press, New York, second edition, 2001.

13. Jovo P. Jaric. On the representation of symmetric isotropic 4-tensors. J. Elasticity, 51(1):73–79, 1998.
14. Harold Jeffreys. Cartesian Tensors. Cambridge University Press, 1931.



23

15. V. V. Jikov, S. M. Kozlov, and O. A. Oleı̆nik. Homogenization of differential operators and integral func-
tionals. Springer-Verlag, Berlin, 1994. Translated from the Russian by G. A. Yosifian [G. A. Iosif’yan].

16. C. S. Jog. A concise proof of the representation theorem for fourth-order isotropic tensors. J. Elasticity,
85(2):119–124, 2006.

17. James K. Knowles. On the representation of the elasticity tensor for isotropic materials. J. Elasticity,
39(2):175–180, 1995.

18. L. C. Martins. The representation theorem for linear, isotropic tensor functions revisited. J. Elasticity,
54(1):89–92, 1999.

19. L. C. Martins and P. Podio Guidugli. A new proof of the representation theorem for isotropic, linear
constitutive relations. J. Elasticity, 8(3):319–322, 1978.

20. G. A. Maugin. On the structure of the theory of polar elasticity. R. Soc. Lond. Philos. Trans. Ser. A Math.
Phys. Eng. Sci., 356(1741):1367–1395, 1998.

21. Martin Ostoja-Starzewski. Microstructural randomness and scaling in mechanics of materials. CRC
Series: Modern Mechanics and Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2008.

22. G. C. Papanicolaou and S. R. S. Varadhan. Boundary value problems with rapidly oscillating random
coefficients. In Random fields, Vol. I, II (Esztergom, 1979), volume 27 of Colloq. Math. Soc. János
Bolyai, pages 835–873. North-Holland, Amsterdam, 1981.

23. K. A. Pericak-Spector and Scott J. Spector. On the representation theorem for linear, isotropic tensor
functions. J. Elasticity, 39(2):181–185, 1995.

24. Issai Schur. Neue begründung der theorie der gruppencharaktere. Sitzungsberichte der Königlich
Preußischen Akademie der Wissenschaften zu Berlin, Part 1, pages 406–432, 1905.

25. Salvatore Torquato. Random heterogeneous materials, volume 16 of Interdisciplinary Applied Mathe-
matics. Springer-Verlag, New York, 2002. Microstructure and macroscopic properties.

26. C. Truesdell. The mechanical foundations of elasticity and fluid dynamics. J. Rational Mech. Anal.,
1:125–171, 173–300, 1952.

27. C. Truesdell. Continuum mechanics. I. The mechanical foundations of elasticity and fluid dynamics.
International Science Review Series, Vol. 8. Gordon and Breach Science Publishers, New York, 1966.

28. C. Truesdell. The Elements of Continuum Mechanics. Springer-Verlag, 1966.
29. C. Truesdell and W. Noll. The non-linear field theories of mechanics. Springer-Verlag, Berlin, third

edition, 2004. Edited and with a preface by Stuart S. Antman.
30. H. Xiao. General irreducible representations for constitutive equations of elastic crystals and transversely

isotropic elastic solids. J. Elasticity, 39(1):47–73, 1995.


