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Abstract

We consider an inverse problem of estimating parameters in a simple SIR model of disease
dynamics. We analyze the sensitivity of the solution of the inverse problem to data observed
at different times. We do this using Hyper-differential sensitivity analysis (HDSA), which
seeks to assess the sensitivity of the solution of an optimization problem to problem data [1].
The analysis shows that the estimation of different model parameters shows sensitivity to
different measurement times. This also indicates key observation times when observations
should be collected.

1 Introduction

Consider the problem of estimating the parameters β and γ in

S′ = − β
N
SI,

I ′ =
β

N
SI − γI,

R′ = γI,

where N = S + I + R be the total population (which here is a conserved quantity). Given
measurements of I(t) at ti, i = 1, . . . , n, we can estimate the parameter vector m = [β γ]> by
solving an inverse problem. Let’s denote the vector of measurements by y and by f(m) the
parameter-to-observable map

f(m) =


I(t1;m)

I(t2;m)
...

I(tn;m)

 .
Note that evaluating f(m) requires solving the SIR system with parameter vector m and
extracting solution values at the measurement times. The inverse problem of estimating the
parameter vector m is as follows:

min
m

J(m) := ‖f(m)− y‖2. (1.1)

We seek to understand the sensitivity of the solution of the inverse problem to measure-
ments yj , j = 1, . . . , n. To do so, we consider the modified objective function

J(m) = ‖f(m)− ỹ(θ)‖2, where ỹi(θ) = (1 + θi)yi, i = 1, . . . , n,

and y is a fixed vector of measurement data. The elements θi, i = 1, . . . , n define perturbations
of a nominal data vector y. Let m∗ = m∗(θ) be the solution of the inverse problem

min
m

J(m,θ) := ‖f(m)− ỹ(θ)‖2.
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HDSA for an inverse SIR problem

We will perform HDSA by computing

D =
∂m∗

∂θ

∣∣∣
θ=θ̄

,

where θ̄ = 0. Computing D is facilitated by differentiating through the optimality condition

g(m∗(θ),θ) = 0, (1.2)

where g denotes gradient of J with respect tom. We have used the Implicit Function Theorem
(assuming sufficient regularity) to write (1.2), which will hold in a neighborhood of (m̄∗, θ̄),
and express the solution of the inverse problem as a function of θ in a neighborhood of θ̄.
Here m̄∗ is the solution of the inverse problem, corresponding to θ̄; i.e, m̄∗ = m∗(θ̄).

Taking partial derivative with respect to θi through (1.2) gives

∂g

∂m︸︷︷︸
2×2

∂m∗

∂θi︸ ︷︷ ︸
2×1

+
∂g

∂θi︸︷︷︸
2×1

= 0,︸︷︷︸
2×1

i = 1, . . . , n, (1.3)

Note that ∂g
∂m is the Hessian H of J (with respect to m). We can write (1.3) in the compact

form

HD = −B,

where B is defined by

Bji =
∂2J

∂θi∂mj
, i = 1, . . . , n, j = 1, 2.

In the present analysis, B and H are computed at (m,θ) = (m̄∗, θ̄).

2 Simulation setup

We consider the SIR model above in the interval [0, 20]. We assume “true” parameter vector
m = [β γ]> = [2 1]>. The initial conditions are assumed to be S(0) = 9900, I(0) = 100, and
R(0) = 0. In the numerical computations, we considered the fraction of infected people,
I(t)/N when defining measurements and the parameter-to-observable map, instead of I(t);
see Figure 1.

Figure 1: The proportion of the population that is infected over time.

We synthesized noisy measurements, with 2.5% noise, at 56 equally spaced observation
times in the interval [0, 12]. This inverse problem can be solved easily to get good estimates
of the parameter vector m. Numerically, we computed parameter estimates β∗ = 2.0116 and
γ∗ = 1.0106. To provide further insight into this simple inverse problem, we present a plot of
the objective function J in Figure 2.
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HDSA for an inverse SIR problem

Figure 2: The objective function J(m) = J(β, γ) in a neighborhood of the solution to the
inverse problem.

3 Results of sensitivity analysis and discussion

We computed the sensitivity of the solution of the inverse problem, m∗ = [β∗ γ∗]>, given by

m∗ = argmin
m

J(m),

with respect to data perturbation vector θ. The plots in Figure 3 presents the results of the
sensitivity analysis.

Figure 3: The sensitivity of the estimated β∗ and γ∗ with respect to θi, i = 1, . . . , n. Here we
have taken n = 56 equally spaced measurements. The dashed vertical line indicates the peak
of the epidemic when the number of infecteds is at its maximum.

We draw the following conclusions:

1. The estimated β∗ is sensitive to measurements leading up to and following the peak
of the infected population curve, but not at or near the peak. We see slightly higher
sensitivity to the measurements following the peak. We note that β∗ is not very sensitive
to measurements very early or later in time as we approach a steady state.

2. The sensitivities for the estimated γ∗ are quite different. The observations become im-
portant as we are near the peak of the epidemic curve and we see high sensitivities to
data following the peak. As before, early measurements and those later in time, as we
approach the steady state, are not as important. Lack of sensitivity to early observations
is more pronounced in this case.
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