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Global Sensitivity analysis (GSA)

model: y = f (θ)

evaluating f (θ) requires evaluating a mathematical model (ODE, PDE, DAE,
Stochastic model, ...)

θ ∈ Rp vector of uncertain model parameters

global sensitivity analysis (GSA):

find entries of θ that are “most important to model output”

various ways of defining parameter importance: variance based, derivative
based, moment independent, etc.

why do GSA?

understand the model better

reduce dimensionality of input parameter (accelerate forward/inverse UQ
problems)

simplify the model ...
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Some standard GSA measures

variance based:

Si =
Var {E {f (θ)|θi )}}

Var {f (θ)} , i = 1, . . . , p

estimation requires Monte-Carlo sampling

derivative based:

νi = E
{( ∂f

∂θi

)2 }
, i = 1, . . . , p

and others: moment independent; Morris screening; activity scores; ...
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Challenges/opportunities

model: y = f (θ)

high dimensional θ

expensive to evaluate f : models governed by complex physics systems

entries of θ might be correlated

results depend on how parameter uncertainty is modeled; robustness issues

f might be time/space dependent ⇒ high-dimensional output

stochasticity in the model, y = f (θ, ω); e.g., stochastic compartment models,
stochastically forced dynamical systems;

problems that are defined at multiple scales

in this talk:
we will discuss GSA across physical scales
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GSA across scales: application to stochastic chemical systems

Alen Alexanderian (NCSU) Modeling under uncertainty October 9, 2020 5 / 35



Stochastic chemical kinetics: basic setup

species S1,S2, . . . ,SN

state vector X (t) = (X1(t), . . . ,XN(t))T

Xi (t) = number of molecules of ith species at t

M reactions; each reaction has

a stoichiometric (state change) vector ν j

a reaction rate kj (we model as uncertain)
a propensity function aj(X )
aj(X (t))dt = Prob {reaction j occurs in time interval [t, t + dt)}

example: two species model

S1
k1→ S2 S2

k2→ S1

a1(X ) = k1X1 ν1 =

[
−1
1

]
a2(X ) = k2X2 ν2 =

[
1
−1

]
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Multiple scales

microscale: track number of molecules of each species over time

X (t, ω) ∈ ZN
≥0 (use Stochastic Simulation Algorithm)

mesoscale: track species evolution via real valued stochastic process
(Chemical Langevin Equation)

Y (t, ω) ∈ RN
≥0 (use methods for SDEs)

macroscale: track species concentration using a system of ODEs
(reaction rate equations — RREs)

y(t) ∈ RN
≥0 (use methods for ODEs)
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Model problem

Michaelis-Menten system:

S + E
k1→ C

C
k2→ S + E

C
k3→ P + E

species: S (substrate), E (enzyme), C (complex); P (product).

uncertain parameters: θ = (k1, k2, k3)T

quantity of interest (QoI): average product concentration:

f (θ, ω) =
1

T

∫ T

0

[P](t,θ, ω) dt

GSA: with respect to reaction rates

can we use the macroscale model for efficient GSA of the microscale model?
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Michaelis–Menten simulation
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Black lines: solution of RREs
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Michaelis–Menten simulation
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GSA across scales in a nutshell

stochastic model: y = f (θ, ω)

for example: f (θ, ω) = 1
T

∫ T

0
[P](t, ω,θ) dt

f(θ, ω) {Sj(ω)}Mj=1

f̃(θ) {S̃j}Mj=1

li
m
it
in
g
p
ro
ce
ss

GSA

GSA

li
m
it
in
g
p
ro
ce
ss

questions: does this diagram commute? in what sense? what assumptions are
needed?
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Relation between micro and macro scale models

system size: V = Avogadro number× system volume

evolution of stochastic species concentrations:

ZV (t) = ZV (0) +
M∑
j=1

1

V
ν jYj

(
V

∫ t

0

ãj(ZV (s)) ds

)
thermodynamic limit:

lim
V→∞

sup
s≤t
|ZV (s)− y(s)| = 0 a.s. for all t > 0

where y(t) satisfies the RREs

dy
dt

= F (y(t)), y(0) = y0, with F (y) =
M∑
j=1

ν j ãj(y)

example of stochastic QoI: f (θ, ω) =
∫ T

0
ZV

1 (t,θ, ω) dt

the corresponding “deterministic” QoI: f̃ (θ) =
∫ T

0
y1(t,θ) dt
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Numerical results: back to the Michaelis-Menten system

S + E
k1−⇀↽−
k2

C
k3−→ P + E

f (θ, ω) =

∫ T

0

[P](θ, ω, t) dt θ = (k1, k2, k3)T

convergence of T1(ω) in distribution for increasing V
(T1: total Sobol’ index corresponding to k1)
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Numerical results: back to the Michaelis-Menten system

S + E
k1−⇀↽−
k2

C
k3−→ P + E

f (θ, ω) =

∫ T

0

[P](θ, ω, t) dt θ = (k1, k2, k3)T

convergence of T2(ω) in distribution for increasing V
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Numerical results: back to the Michaelis-Menten system

S + E
k1−⇀↽−
k2

C
k3−→ P + E

f (θ, ω) =

∫ T

0

[P](θ, ω, t) dt θ = (k1, k2, k3)T

convergence of T3(ω) in distribution for increasing V
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GSA across scales: summary

can use the (deterministic) RREs for efficient GSA of stochastic chemical
system

numerical illustrations on biochemical reaction networks

analysis of convergence

many interesting remaining questions ...
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Inverse problems and optimal design of experiments
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Example: Diffusive transport of a contaminant with
uncertain initial condition

Governing PDE (forward model):
advection-diffusion equation

Unknown/uncertain parameter: initial
concentration field

Inverse problem: Use a vector d of space/time
sensor measurements of concentration to
reconstruct the initial state
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2D Model problem

D

v 2
=

1

v
2
=
−
1

Forward problem: time dependent advection-diffusion

ut − κ∆u + v · ∇u = 0 in D × [0,T ]

u(0, x) = m in D
κ∇u · n = 0 on ∂D × [0,T ]

m: unknown initial condition

v : velocity field
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Solution of the forward problem

t = 0 t = 1

t = 2 t = 3
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The inverse problem: reconstruct initial condition

The inverse problem of finding the unknown initial state based on sensor data

min
m

1

2
‖Bu(m)− d‖2 +

α

2
〈Am,m〉

where
ut − κ∆u + v · ∇u = 0 in D × [0,T ]

u(0, x) = m in D
κ∇u · n = 0 on ∂D × [0,T ]

B: observation operator

d = [dT
1 dT

2 · · ·dT
nt ]

T , d i ∈ Rns , ns = number of sensors

u linear in m, u = Sm =⇒ linear parameter-to-observable map: F = BS
Can rewrite the optimization problem as

min
m
J (m) :=

1

2
‖Fm − d‖2 +

α

2
〈Am,m〉
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Solving the inverse problem

Derivative of J

DJ (m)(m̃) =
d

dε
J (m + εm̃) |ε=0

= 〈F∗(Fm − d ) + αAm, m̃〉

Action of F∗
F∗y = p(·, 0), where p is solution of the adjoint equation

−pt −∇ · (pv)− κ∆p = −B∗y
p(T ) = 0

(vp + κ∇p) · n = 0

Optimality condition

(F∗F + αA)m = F∗d discretize
=⇒ (F∗F + αA)m = F∗d

Solve the linear system using an iterative method, e.g. conjugate gradient
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Solving the inverse problem: numerical results

Truth Sensor sites Reconstruction
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Solving the inverse problem: numerical results

Truth Sensor sites Reconstruction

Alen Alexanderian (NCSU) Modeling under uncertainty October 9, 2020 22 / 35



Optimal sensor placement as an optimal design problem

How to place sensors in an “optimal” way?

Can formulate the optimal sensor placement problem as an optimal
experimental design (OED) problem

Can consider a statistical formulation of the inverse problem

In addition to a reconstruction, we can also compute a statistical distribution
of the parameters, conditioned on experimental data

Find sensor locations so as to optimize the statistical quality of the
reconstructed/inferred parameter

In context of inverse problems a Bayesian formulation is natural
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Bayesian inference: Bayes’ formula

πpost(m|d ) ∝ πlike(d |m)πprior(m)

πpost(m|d ) posterior pdf of m
πlike(d |m) pdf of d given m (data likelihood)
πprior(m) prior pdf of m

pdf = probability density function
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0.02

0.04

0.06

m

p
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Prior
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Rev. Thomas Bayes Pierre-Simon Laplace

Bayes, T., An Essay towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, FRS Communicated by Mr. Price, in a Letter to
John Canton, AMFRS. Philosophical Transactions, 1763.

Laplace, P.S., Théorie analytique des probabilités. 1820.
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Bayesian linear inverse problems

Assume linear parameter-to-observable map:

d = Fm + η

and assume prior is Gaussian

π0(m) ∝ exp(− 1
2m

TΓ−1
priorm)

Then, the posterior pdf is

πpost(m|d ) ∝ exp
{
− 1

2 (m −mMAP)T (FTΓ−1
noiseF + Γ−1

prior)(m −mMAP)
}

⇒ µpost = N (mMAP, Γpost)

Γ−1
post = FTΓ−1

noiseF︸ ︷︷ ︸
Hmisfit

+Γ−1
prior (= D2

m(− log πpost))

mMAP = arg min
m

1

2
‖Fm − d‖2

Γ−1
noise

+
1

2

〈
Γ−1
priorm,m

〉
An important problem structure:

Hmisfit is low rank, and Γ
1/2
priorHmisfitΓ

1/2
prior is even more so ...
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Bayesian inversion of the initial condition for 2D
advection-diffusion equation

Posterior mean, and posterior variance

truth posterior mean posterior std deviation

Posterior samples: ν = mMAP + Γ
1/2
postM−1/2n, n ∼ N (0, I)
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The optimal experimental design problem

A grid of candidate locations for observation points

Experimental design: locations of observation points / sensors

design :=

{
x1, . . . , xNs

w1, . . . ,wNs

}
Bayesian inversion:

data + likelihood, prior =⇒ posterior distribution of inversion parameter

Optimal experimental design (OED):

Find sensor locations that result in minimized posterior uncertainty
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Commonly used OED criteria

Bayesian A-optimal experimental design:

minimize
w∈S

tr
[
Γpost(w)

]
+ γP(w) (1)

Bayesian D-optimal experimental design:

minimize
w∈S

−1

2
log det(I + Γ

1/2
priorHmisfit(w)Γ

1/2
prior) + γP(w) (2)

Need trace/log-determinant of high-dimensional operators

Need many applications of the forward operator =⇒ many PDE solves

OED much harder for nonlinear inverse problems

Ingredients of efficient OED methods: randomized matrix methods, use of
problem structure, low-rank approximations, iterative solvers, gradient based
optimization algorithms, adjoint based gradient/Hessian computation,
sparsifying penalty methods, ...

A.K. Saibaba, A. Alexanderian, and I.C. Ipsen. Randomized matrix-free trace and log- determinant estimators.
Numerische Mathematik, 2017.
A. Alexanderian and A. Saibaba, Efficient D-optimal design of experiments for infinite-dimensional Bayesian
linear inverse problems. SIAM Journal on Scientific Computing. 2018.
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A-optimal design: the variance field

Optimal Sub-optimal
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A-optimal design: the variance field

Optimal Sub-optimal
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A-optimal design: the variance field

Optimal Sub-optimal
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OED for 3D model (parameter dim ∼ 104)
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Summary and outlook: Global sensitivity analysis

Global sensitivity analysis: apportion uncertainty in the model output to
different sources of uncertainty in the model input parameters

Interesting directions: theory and computational methods for global
sensitivity analysis with high-dimensional inputs/outputs; GSA for stochastic
models; GSA across scales; sensitivity analysis of inverse problems

Applications: flow through porous media, contaminant transport, radioactive
waste storage, biotransport in cancerous tumors, chemical kinetics,
biochemistry, epidemiology, pharmacokinetics ...

NCSU faculty collaborators: Pierre Gremaud, Ralph Smith

Students: Helen Cleaves, Mike Merritt, Isaac Sunseri
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Summary and outlook: Optimal design of inverse problems

Optimal placement for Bayesian inverse problems: find optimal placements of
measurement point to minimize the uncertainty in reconstructed parameters

Interesting research directions: scalable algorithms for sensor placement for
linear inverse problems governed by PDEs (randomized methods in numerical
linear algebra, low-rank approximations, optimization with exact penalty
method, ...); Optimal sensor placement for nonlinear inverse problems,
(bi-level PDE-constrained optimization, adjoint based derivative computation,
... ), optimal experimental design under model uncertainty (marginalization,
stochastic optimization, ...); sequential design of experiments

Applications: porous medium flow, contaminant source identification,
radiation detection in urban environments

NCSU faculty collaborators: Arvind Saibaba, Ralph Smith

Students: Isaac Sunseri, Bekah White
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Relevant courses

MA 580 - 780 Numerical Analysis
MA 515 - 715 Analysis
MA 573 - 574 Mathematical Modeling
MA 534 - 734 Partial Differential Equations
MA 546 - 747 Applied Probability and Stochastic Processes
MA 540 Uncertainty Quantification
MA 587 Numerical Solution of PDEs – Finite Element Method
MA 798 Inverse Problems (offered this spring)
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Some references: sensitivity analysis

M. Merritt, A. Alexanderian, and P.A. Gremaud, Multiscale global sensitivity
analysis for stochastic chemical systems. SIAM Journal on Multiscale Modeling and
Simulation, under revision. 2020.

A. Alexanderian, P. Gremaud, and R.C. Smith. Variance-based sensitivity analysis
for time-dependent processes. Reliability Engineering & System Safety. 2020.

H. Cleaves, A. Alexanderian, H. Guy, R.C. Smith, and M. Yu. Derivative based
global sensitivity analysis for models with high-dimensional inputs and functional
outputs. SIAM Journal on Scientific Computing. 41(6):A3524–A3551, 2019.

Manav Vohra, Alen Alexanderian, Hayley Guy, and Sankaran Mahadevan. Active
Subspace-based dimension reduction for chemical kinetics applications with
epistemic uncertainty. Combustion and Flame, 204:152–161, 2019.

J. Hart, A. Alexanderian, and P. Gremaud. Efficient computation of Sobol indices
for stochastic models. SIAM Jounral on Scientific Computing. 39(4). 2017.
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Some references: OED and inverse problems

Alen Alexanderian Optimal Experimental Design for Bayesian Inverse Problems
Governed by PDEs: A Review. In revision, 2020.
https://arxiv.org/abs/2005.12998

A. Alexanderian, N. Petra, G. Stadler, and I. Sunseri. Optimal design of large-scale
Bayesian linear inverse problems under reducible model uncertainty: good to know
what you don’t know. In review, 2020. https://arxiv.org/abs/2006.11939

I. Sunseri, J. Hart, B. van Bloemen Waanders, A. Alexanderian. Hyper-Differential
Sensitivity Analysis for Inverse Problems Constrained by Partial Differential
Equations. Inverse Problems, Accepted, 2020. https://arxiv.org/abs/2003.00978

A. Alexanderian and A. Saibaba, Efficient D-optimal design of experiments for
infinite-dimensional Bayesian linear inverse problems. SIAM Journal on Scientific
Computing. 2018.

A. Alexanderian, N. Petra, G. Stadler, and O. Ghattas. A fast and scalable method
for A-optimal design of experiments for infinite-dimensional Bayesian nonlinear
inverse problems. SISC, 2016.

A. Alexanderian, N. Petra, G. Stadler, and O. Ghattas. A-optimal design of
experiments for infinite-dimensional Bayesian linear inverse problems with
regularized `0-sparsification. SISC. 2014.
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